Whakaoti mō s
s=-\frac{10}{11}\approx -0.909090909
Tohaina
Kua tāruatia ki te papatopenga
s+3=7s+21-\left(8-5s\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te s+3.
s+3=7s+21-8-\left(-5s\right)
Hei kimi i te tauaro o 8-5s, kimihia te tauaro o ia taurangi.
s+3=7s+21-8+5s
Ko te tauaro o -5s ko 5s.
s+3=7s+13+5s
Tangohia te 8 i te 21, ka 13.
s+3=12s+13
Pahekotia te 7s me 5s, ka 12s.
s+3-12s=13
Tangohia te 12s mai i ngā taha e rua.
-11s+3=13
Pahekotia te s me -12s, ka -11s.
-11s=13-3
Tangohia te 3 mai i ngā taha e rua.
-11s=10
Tangohia te 3 i te 13, ka 10.
s=\frac{10}{-11}
Whakawehea ngā taha e rua ki te -11.
s=-\frac{10}{11}
Ka taea te hautanga \frac{10}{-11} te tuhi anō ko -\frac{10}{11} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}