Whakaoti mō r
r=-5ix-4i+\frac{19i}{x}
x\neq 0
Whakaoti mō x
x=-\frac{\sqrt{396-8ir-r^{2}}}{10}+\frac{ir}{10}-\frac{2}{5}
x=\frac{\sqrt{396-8ir-r^{2}}}{10}+\frac{ir}{10}-\frac{2}{5}
Tohaina
Kua tāruatia ki te papatopenga
rix=14x+21+5\left(x+2\right)\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 2x+3.
rix=14x+21+\left(5x+10\right)\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+2.
rix=14x+21+5x^{2}-10x-40
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x+10 ki te x-4 ka whakakotahi i ngā kupu rite.
rix=4x+21+5x^{2}-40
Pahekotia te 14x me -10x, ka 4x.
rix=4x-19+5x^{2}
Tangohia te 40 i te 21, ka -19.
ixr=5x^{2}+4x-19
He hanga arowhānui tō te whārite.
\frac{ixr}{ix}=\frac{5x^{2}+4x-19}{ix}
Whakawehea ngā taha e rua ki te ix.
r=\frac{5x^{2}+4x-19}{ix}
Mā te whakawehe ki te ix ka wetekia te whakareanga ki te ix.
r=-5ix-4i+\frac{19i}{x}
Whakawehe 4x-19+5x^{2} ki te ix.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}