Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

r^{2}-5r+9-r=0
Tangohia te r mai i ngā taha e rua.
r^{2}-6r+9=0
Pahekotia te -5r me -r, ka -6r.
a+b=-6 ab=9
Hei whakaoti i te whārite, whakatauwehea te r^{2}-6r+9 mā te whakamahi i te tātai r^{2}+\left(a+b\right)r+ab=\left(r+a\right)\left(r+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-9 -3,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 9.
-1-9=-10 -3-3=-6
Tātaihia te tapeke mō ia takirua.
a=-3 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(r-3\right)\left(r-3\right)
Me tuhi anō te kīanga whakatauwehe \left(r+a\right)\left(r+b\right) mā ngā uara i tātaihia.
\left(r-3\right)^{2}
Tuhia anōtia hei pūrua huarua.
r=3
Hei kimi i te otinga whārite, whakaotia te r-3=0.
r^{2}-5r+9-r=0
Tangohia te r mai i ngā taha e rua.
r^{2}-6r+9=0
Pahekotia te -5r me -r, ka -6r.
a+b=-6 ab=1\times 9=9
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei r^{2}+ar+br+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-9 -3,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 9.
-1-9=-10 -3-3=-6
Tātaihia te tapeke mō ia takirua.
a=-3 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(r^{2}-3r\right)+\left(-3r+9\right)
Tuhia anō te r^{2}-6r+9 hei \left(r^{2}-3r\right)+\left(-3r+9\right).
r\left(r-3\right)-3\left(r-3\right)
Tauwehea te r i te tuatahi me te -3 i te rōpū tuarua.
\left(r-3\right)\left(r-3\right)
Whakatauwehea atu te kīanga pātahi r-3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(r-3\right)^{2}
Tuhia anōtia hei pūrua huarua.
r=3
Hei kimi i te otinga whārite, whakaotia te r-3=0.
r^{2}-5r+9-r=0
Tangohia te r mai i ngā taha e rua.
r^{2}-6r+9=0
Pahekotia te -5r me -r, ka -6r.
r=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Pūrua -6.
r=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Whakareatia -4 ki te 9.
r=\frac{-\left(-6\right)±\sqrt{0}}{2}
Tāpiri 36 ki te -36.
r=-\frac{-6}{2}
Tuhia te pūtakerua o te 0.
r=\frac{6}{2}
Ko te tauaro o -6 ko 6.
r=3
Whakawehe 6 ki te 2.
r^{2}-5r+9-r=0
Tangohia te r mai i ngā taha e rua.
r^{2}-6r+9=0
Pahekotia te -5r me -r, ka -6r.
\left(r-3\right)^{2}=0
Tauwehea r^{2}-6r+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-3\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-3=0 r-3=0
Whakarūnātia.
r=3 r=3
Me tāpiri 3 ki ngā taha e rua o te whārite.
r=3
Kua oti te whārite te whakatau. He ōrite ngā whakatau.