Tauwehe
\left(r-13\right)\left(r+10\right)
Aromātai
\left(r-13\right)\left(r+10\right)
Pātaitai
Polynomial
r ^ { 2 } - 3 r - 130
Tohaina
Kua tāruatia ki te papatopenga
a+b=-3 ab=1\left(-130\right)=-130
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei r^{2}+ar+br-130. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-130 2,-65 5,-26 10,-13
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -130.
1-130=-129 2-65=-63 5-26=-21 10-13=-3
Tātaihia te tapeke mō ia takirua.
a=-13 b=10
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(r^{2}-13r\right)+\left(10r-130\right)
Tuhia anō te r^{2}-3r-130 hei \left(r^{2}-13r\right)+\left(10r-130\right).
r\left(r-13\right)+10\left(r-13\right)
Tauwehea te r i te tuatahi me te 10 i te rōpū tuarua.
\left(r-13\right)\left(r+10\right)
Whakatauwehea atu te kīanga pātahi r-13 mā te whakamahi i te āhuatanga tātai tohatoha.
r^{2}-3r-130=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
r=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-130\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-\left(-3\right)±\sqrt{9-4\left(-130\right)}}{2}
Pūrua -3.
r=\frac{-\left(-3\right)±\sqrt{9+520}}{2}
Whakareatia -4 ki te -130.
r=\frac{-\left(-3\right)±\sqrt{529}}{2}
Tāpiri 9 ki te 520.
r=\frac{-\left(-3\right)±23}{2}
Tuhia te pūtakerua o te 529.
r=\frac{3±23}{2}
Ko te tauaro o -3 ko 3.
r=\frac{26}{2}
Nā, me whakaoti te whārite r=\frac{3±23}{2} ina he tāpiri te ±. Tāpiri 3 ki te 23.
r=13
Whakawehe 26 ki te 2.
r=-\frac{20}{2}
Nā, me whakaoti te whārite r=\frac{3±23}{2} ina he tango te ±. Tango 23 mai i 3.
r=-10
Whakawehe -20 ki te 2.
r^{2}-3r-130=\left(r-13\right)\left(r-\left(-10\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 13 mō te x_{1} me te -10 mō te x_{2}.
r^{2}-3r-130=\left(r-13\right)\left(r+10\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}