Whakaoti mō r
r=8\sqrt{2}+11\approx 22.313708499
r=11-8\sqrt{2}\approx -0.313708499
Tohaina
Kua tāruatia ki te papatopenga
r^{2}-22r-7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-7\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -22 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-22\right)±\sqrt{484-4\left(-7\right)}}{2}
Pūrua -22.
r=\frac{-\left(-22\right)±\sqrt{484+28}}{2}
Whakareatia -4 ki te -7.
r=\frac{-\left(-22\right)±\sqrt{512}}{2}
Tāpiri 484 ki te 28.
r=\frac{-\left(-22\right)±16\sqrt{2}}{2}
Tuhia te pūtakerua o te 512.
r=\frac{22±16\sqrt{2}}{2}
Ko te tauaro o -22 ko 22.
r=\frac{16\sqrt{2}+22}{2}
Nā, me whakaoti te whārite r=\frac{22±16\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri 22 ki te 16\sqrt{2}.
r=8\sqrt{2}+11
Whakawehe 22+16\sqrt{2} ki te 2.
r=\frac{22-16\sqrt{2}}{2}
Nā, me whakaoti te whārite r=\frac{22±16\sqrt{2}}{2} ina he tango te ±. Tango 16\sqrt{2} mai i 22.
r=11-8\sqrt{2}
Whakawehe 22-16\sqrt{2} ki te 2.
r=8\sqrt{2}+11 r=11-8\sqrt{2}
Kua oti te whārite te whakatau.
r^{2}-22r-7=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
r^{2}-22r-7-\left(-7\right)=-\left(-7\right)
Me tāpiri 7 ki ngā taha e rua o te whārite.
r^{2}-22r=-\left(-7\right)
Mā te tango i te -7 i a ia ake anō ka toe ko te 0.
r^{2}-22r=7
Tango -7 mai i 0.
r^{2}-22r+\left(-11\right)^{2}=7+\left(-11\right)^{2}
Whakawehea te -22, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -11. Nā, tāpiria te pūrua o te -11 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}-22r+121=7+121
Pūrua -11.
r^{2}-22r+121=128
Tāpiri 7 ki te 121.
\left(r-11\right)^{2}=128
Tauwehea r^{2}-22r+121. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-11\right)^{2}}=\sqrt{128}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-11=8\sqrt{2} r-11=-8\sqrt{2}
Whakarūnātia.
r=8\sqrt{2}+11 r=11-8\sqrt{2}
Me tāpiri 11 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}