Whakaoti mō r
r=1
Tohaina
Kua tāruatia ki te papatopenga
-r^{2}+2=r^{2}+4-4r
Pahekotia te r^{2} me -2r^{2}, ka -r^{2}.
-r^{2}+2-r^{2}=4-4r
Tangohia te r^{2} mai i ngā taha e rua.
-2r^{2}+2=4-4r
Pahekotia te -r^{2} me -r^{2}, ka -2r^{2}.
-2r^{2}+2-4=-4r
Tangohia te 4 mai i ngā taha e rua.
-2r^{2}-2=-4r
Tangohia te 4 i te 2, ka -2.
-2r^{2}-2+4r=0
Me tāpiri te 4r ki ngā taha e rua.
-r^{2}-1+2r=0
Whakawehea ngā taha e rua ki te 2.
-r^{2}+2r-1=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-\left(-1\right)=1
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -r^{2}+ar+br-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-r^{2}+r\right)+\left(r-1\right)
Tuhia anō te -r^{2}+2r-1 hei \left(-r^{2}+r\right)+\left(r-1\right).
-r\left(r-1\right)+r-1
Whakatauwehea atu -r i te -r^{2}+r.
\left(r-1\right)\left(-r+1\right)
Whakatauwehea atu te kīanga pātahi r-1 mā te whakamahi i te āhuatanga tātai tohatoha.
r=1 r=1
Hei kimi otinga whārite, me whakaoti te r-1=0 me te -r+1=0.
-r^{2}+2=r^{2}+4-4r
Pahekotia te r^{2} me -2r^{2}, ka -r^{2}.
-r^{2}+2-r^{2}=4-4r
Tangohia te r^{2} mai i ngā taha e rua.
-2r^{2}+2=4-4r
Pahekotia te -r^{2} me -r^{2}, ka -2r^{2}.
-2r^{2}+2-4=-4r
Tangohia te 4 mai i ngā taha e rua.
-2r^{2}-2=-4r
Tangohia te 4 i te 2, ka -2.
-2r^{2}-2+4r=0
Me tāpiri te 4r ki ngā taha e rua.
-2r^{2}+4r-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 4 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-4±\sqrt{16-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Pūrua 4.
r=\frac{-4±\sqrt{16+8\left(-2\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
r=\frac{-4±\sqrt{16-16}}{2\left(-2\right)}
Whakareatia 8 ki te -2.
r=\frac{-4±\sqrt{0}}{2\left(-2\right)}
Tāpiri 16 ki te -16.
r=-\frac{4}{2\left(-2\right)}
Tuhia te pūtakerua o te 0.
r=-\frac{4}{-4}
Whakareatia 2 ki te -2.
r=1
Whakawehe -4 ki te -4.
-r^{2}+2=r^{2}+4-4r
Pahekotia te r^{2} me -2r^{2}, ka -r^{2}.
-r^{2}+2-r^{2}=4-4r
Tangohia te r^{2} mai i ngā taha e rua.
-2r^{2}+2=4-4r
Pahekotia te -r^{2} me -r^{2}, ka -2r^{2}.
-2r^{2}+2+4r=4
Me tāpiri te 4r ki ngā taha e rua.
-2r^{2}+4r=4-2
Tangohia te 2 mai i ngā taha e rua.
-2r^{2}+4r=2
Tangohia te 2 i te 4, ka 2.
\frac{-2r^{2}+4r}{-2}=\frac{2}{-2}
Whakawehea ngā taha e rua ki te -2.
r^{2}+\frac{4}{-2}r=\frac{2}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
r^{2}-2r=\frac{2}{-2}
Whakawehe 4 ki te -2.
r^{2}-2r=-1
Whakawehe 2 ki te -2.
r^{2}-2r+1=-1+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}-2r+1=0
Tāpiri -1 ki te 1.
\left(r-1\right)^{2}=0
Tauwehea r^{2}-2r+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-1\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r-1=0 r-1=0
Whakarūnātia.
r=1 r=1
Me tāpiri 1 ki ngā taha e rua o te whārite.
r=1
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}