Whakaoti mō x (complex solution)
x=\frac{r^{2}+1}{r^{2}-1}
r\neq -1\text{ and }r\neq 1
Whakaoti mō x
x=\frac{r^{2}+1}{r^{2}-1}
|r|\neq 1
Whakaoti mō r (complex solution)
r=-\left(x-1\right)^{-\frac{1}{2}}\sqrt{x+1}
r=\left(x-1\right)^{-\frac{1}{2}}\sqrt{x+1}\text{, }x\neq 1
Whakaoti mō r
r=\sqrt{\frac{x+1}{x-1}}
r=-\sqrt{\frac{x+1}{x-1}}\text{, }x>1\text{ or }x\leq -1
Tohaina
Kua tāruatia ki te papatopenga
\left(x-1\right)r^{2}=x+1
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-1.
xr^{2}-r^{2}=x+1
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te r^{2}.
xr^{2}-r^{2}-x=1
Tangohia te x mai i ngā taha e rua.
xr^{2}-x=1+r^{2}
Me tāpiri te r^{2} ki ngā taha e rua.
\left(r^{2}-1\right)x=1+r^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(r^{2}-1\right)x=r^{2}+1
He hanga arowhānui tō te whārite.
\frac{\left(r^{2}-1\right)x}{r^{2}-1}=\frac{r^{2}+1}{r^{2}-1}
Whakawehea ngā taha e rua ki te r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}
Mā te whakawehe ki te r^{2}-1 ka wetekia te whakareanga ki te r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}\text{, }x\neq 1
Tē taea kia ōrite te tāupe x ki 1.
\left(x-1\right)r^{2}=x+1
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-1.
xr^{2}-r^{2}=x+1
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te r^{2}.
xr^{2}-r^{2}-x=1
Tangohia te x mai i ngā taha e rua.
xr^{2}-x=1+r^{2}
Me tāpiri te r^{2} ki ngā taha e rua.
\left(r^{2}-1\right)x=1+r^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(r^{2}-1\right)x=r^{2}+1
He hanga arowhānui tō te whārite.
\frac{\left(r^{2}-1\right)x}{r^{2}-1}=\frac{r^{2}+1}{r^{2}-1}
Whakawehea ngā taha e rua ki te r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}
Mā te whakawehe ki te r^{2}-1 ka wetekia te whakareanga ki te r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}\text{, }x\neq 1
Tē taea kia ōrite te tāupe x ki 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}