Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Whakaoti mō r (complex solution)
Tick mark Image
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-1\right)r^{2}=x+1
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-1.
xr^{2}-r^{2}=x+1
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te r^{2}.
xr^{2}-r^{2}-x=1
Tangohia te x mai i ngā taha e rua.
xr^{2}-x=1+r^{2}
Me tāpiri te r^{2} ki ngā taha e rua.
\left(r^{2}-1\right)x=1+r^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(r^{2}-1\right)x=r^{2}+1
He hanga arowhānui tō te whārite.
\frac{\left(r^{2}-1\right)x}{r^{2}-1}=\frac{r^{2}+1}{r^{2}-1}
Whakawehea ngā taha e rua ki te r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}
Mā te whakawehe ki te r^{2}-1 ka wetekia te whakareanga ki te r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}\text{, }x\neq 1
Tē taea kia ōrite te tāupe x ki 1.
\left(x-1\right)r^{2}=x+1
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-1.
xr^{2}-r^{2}=x+1
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te r^{2}.
xr^{2}-r^{2}-x=1
Tangohia te x mai i ngā taha e rua.
xr^{2}-x=1+r^{2}
Me tāpiri te r^{2} ki ngā taha e rua.
\left(r^{2}-1\right)x=1+r^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(r^{2}-1\right)x=r^{2}+1
He hanga arowhānui tō te whārite.
\frac{\left(r^{2}-1\right)x}{r^{2}-1}=\frac{r^{2}+1}{r^{2}-1}
Whakawehea ngā taha e rua ki te r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}
Mā te whakawehe ki te r^{2}-1 ka wetekia te whakareanga ki te r^{2}-1.
x=\frac{r^{2}+1}{r^{2}-1}\text{, }x\neq 1
Tē taea kia ōrite te tāupe x ki 1.