Whakaoti mō c (complex solution)
\left\{\begin{matrix}c=\frac{r}{6m}\text{, }&m\neq 0\\c\in \mathrm{C}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
Whakaoti mō m (complex solution)
\left\{\begin{matrix}m=\frac{r}{6c}\text{, }&c\neq 0\\m\in \mathrm{C}\text{, }&r=0\text{ and }c=0\end{matrix}\right.
Whakaoti mō c
\left\{\begin{matrix}c=\frac{r}{6m}\text{, }&m\neq 0\\c\in \mathrm{R}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}m=\frac{r}{6c}\text{, }&c\neq 0\\m\in \mathrm{R}\text{, }&r=0\text{ and }c=0\end{matrix}\right.
Graph
Pātaitai
Linear Equation
r = 6 cm
Tohaina
Kua tāruatia ki te papatopenga
6cm=r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6mc=r
He hanga arowhānui tō te whārite.
\frac{6mc}{6m}=\frac{r}{6m}
Whakawehea ngā taha e rua ki te 6m.
c=\frac{r}{6m}
Mā te whakawehe ki te 6m ka wetekia te whakareanga ki te 6m.
6cm=r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{6cm}{6c}=\frac{r}{6c}
Whakawehea ngā taha e rua ki te 6c.
m=\frac{r}{6c}
Mā te whakawehe ki te 6c ka wetekia te whakareanga ki te 6c.
6cm=r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6mc=r
He hanga arowhānui tō te whārite.
\frac{6mc}{6m}=\frac{r}{6m}
Whakawehea ngā taha e rua ki te 6m.
c=\frac{r}{6m}
Mā te whakawehe ki te 6m ka wetekia te whakareanga ki te 6m.
6cm=r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{6cm}{6c}=\frac{r}{6c}
Whakawehea ngā taha e rua ki te 6c.
m=\frac{r}{6c}
Mā te whakawehe ki te 6c ka wetekia te whakareanga ki te 6c.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}