Whakaoti mō b (complex solution)
\left\{\begin{matrix}b=\frac{r}{m}-3\text{, }&m\neq 0\\b\in \mathrm{C}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
Whakaoti mō m (complex solution)
\left\{\begin{matrix}m=\frac{r}{b+3}\text{, }&b\neq -3\\m\in \mathrm{C}\text{, }&r=0\text{ and }b=-3\end{matrix}\right.
Whakaoti mō b
\left\{\begin{matrix}b=\frac{r}{m}-3\text{, }&m\neq 0\\b\in \mathrm{R}\text{, }&r=0\text{ and }m=0\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}m=\frac{r}{b+3}\text{, }&b\neq -3\\m\in \mathrm{R}\text{, }&r=0\text{ and }b=-3\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
r=3m+bm
Whakamahia te āhuatanga tohatoha hei whakarea te 3+b ki te m.
3m+bm=r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
bm=r-3m
Tangohia te 3m mai i ngā taha e rua.
mb=r-3m
He hanga arowhānui tō te whārite.
\frac{mb}{m}=\frac{r-3m}{m}
Whakawehea ngā taha e rua ki te m.
b=\frac{r-3m}{m}
Mā te whakawehe ki te m ka wetekia te whakareanga ki te m.
b=\frac{r}{m}-3
Whakawehe r-3m ki te m.
r=3m+bm
Whakamahia te āhuatanga tohatoha hei whakarea te 3+b ki te m.
3m+bm=r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(3+b\right)m=r
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(b+3\right)m=r
He hanga arowhānui tō te whārite.
\frac{\left(b+3\right)m}{b+3}=\frac{r}{b+3}
Whakawehea ngā taha e rua ki te 3+b.
m=\frac{r}{b+3}
Mā te whakawehe ki te 3+b ka wetekia te whakareanga ki te 3+b.
r=3m+bm
Whakamahia te āhuatanga tohatoha hei whakarea te 3+b ki te m.
3m+bm=r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
bm=r-3m
Tangohia te 3m mai i ngā taha e rua.
mb=r-3m
He hanga arowhānui tō te whārite.
\frac{mb}{m}=\frac{r-3m}{m}
Whakawehea ngā taha e rua ki te m.
b=\frac{r-3m}{m}
Mā te whakawehe ki te m ka wetekia te whakareanga ki te m.
b=\frac{r}{m}-3
Whakawehe r-3m ki te m.
r=3m+bm
Whakamahia te āhuatanga tohatoha hei whakarea te 3+b ki te m.
3m+bm=r
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(3+b\right)m=r
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(b+3\right)m=r
He hanga arowhānui tō te whārite.
\frac{\left(b+3\right)m}{b+3}=\frac{r}{b+3}
Whakawehea ngā taha e rua ki te 3+b.
m=\frac{r}{b+3}
Mā te whakawehe ki te 3+b ka wetekia te whakareanga ki te 3+b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}