Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-6 ab=1\left(-7\right)=-7
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei q^{2}+aq+bq-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-7 b=1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(q^{2}-7q\right)+\left(q-7\right)
Tuhia anō te q^{2}-6q-7 hei \left(q^{2}-7q\right)+\left(q-7\right).
q\left(q-7\right)+q-7
Whakatauwehea atu q i te q^{2}-7q.
\left(q-7\right)\left(q+1\right)
Whakatauwehea atu te kīanga pātahi q-7 mā te whakamahi i te āhuatanga tātai tohatoha.
q^{2}-6q-7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
q=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-7\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-\left(-6\right)±\sqrt{36-4\left(-7\right)}}{2}
Pūrua -6.
q=\frac{-\left(-6\right)±\sqrt{36+28}}{2}
Whakareatia -4 ki te -7.
q=\frac{-\left(-6\right)±\sqrt{64}}{2}
Tāpiri 36 ki te 28.
q=\frac{-\left(-6\right)±8}{2}
Tuhia te pūtakerua o te 64.
q=\frac{6±8}{2}
Ko te tauaro o -6 ko 6.
q=\frac{14}{2}
Nā, me whakaoti te whārite q=\frac{6±8}{2} ina he tāpiri te ±. Tāpiri 6 ki te 8.
q=7
Whakawehe 14 ki te 2.
q=-\frac{2}{2}
Nā, me whakaoti te whārite q=\frac{6±8}{2} ina he tango te ±. Tango 8 mai i 6.
q=-1
Whakawehe -2 ki te 2.
q^{2}-6q-7=\left(q-7\right)\left(q-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7 mō te x_{1} me te -1 mō te x_{2}.
q^{2}-6q-7=\left(q-7\right)\left(q+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.