Whakaoti mō q
q=18
q=0
Tohaina
Kua tāruatia ki te papatopenga
q^{2}-36q+540-3q^{2}=-72q+540
Tangohia te 3q^{2} mai i ngā taha e rua.
-2q^{2}-36q+540=-72q+540
Pahekotia te q^{2} me -3q^{2}, ka -2q^{2}.
-2q^{2}-36q+540+72q=540
Me tāpiri te 72q ki ngā taha e rua.
-2q^{2}+36q+540=540
Pahekotia te -36q me 72q, ka 36q.
-2q^{2}+36q+540-540=0
Tangohia te 540 mai i ngā taha e rua.
-2q^{2}+36q=0
Tangohia te 540 i te 540, ka 0.
q\left(-2q+36\right)=0
Tauwehea te q.
q=0 q=18
Hei kimi otinga whārite, me whakaoti te q=0 me te -2q+36=0.
q^{2}-36q+540-3q^{2}=-72q+540
Tangohia te 3q^{2} mai i ngā taha e rua.
-2q^{2}-36q+540=-72q+540
Pahekotia te q^{2} me -3q^{2}, ka -2q^{2}.
-2q^{2}-36q+540+72q=540
Me tāpiri te 72q ki ngā taha e rua.
-2q^{2}+36q+540=540
Pahekotia te -36q me 72q, ka 36q.
-2q^{2}+36q+540-540=0
Tangohia te 540 mai i ngā taha e rua.
-2q^{2}+36q=0
Tangohia te 540 i te 540, ka 0.
q=\frac{-36±\sqrt{36^{2}}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 36 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-36±36}{2\left(-2\right)}
Tuhia te pūtakerua o te 36^{2}.
q=\frac{-36±36}{-4}
Whakareatia 2 ki te -2.
q=\frac{0}{-4}
Nā, me whakaoti te whārite q=\frac{-36±36}{-4} ina he tāpiri te ±. Tāpiri -36 ki te 36.
q=0
Whakawehe 0 ki te -4.
q=-\frac{72}{-4}
Nā, me whakaoti te whārite q=\frac{-36±36}{-4} ina he tango te ±. Tango 36 mai i -36.
q=18
Whakawehe -72 ki te -4.
q=0 q=18
Kua oti te whārite te whakatau.
q^{2}-36q+540-3q^{2}=-72q+540
Tangohia te 3q^{2} mai i ngā taha e rua.
-2q^{2}-36q+540=-72q+540
Pahekotia te q^{2} me -3q^{2}, ka -2q^{2}.
-2q^{2}-36q+540+72q=540
Me tāpiri te 72q ki ngā taha e rua.
-2q^{2}+36q+540=540
Pahekotia te -36q me 72q, ka 36q.
-2q^{2}+36q=540-540
Tangohia te 540 mai i ngā taha e rua.
-2q^{2}+36q=0
Tangohia te 540 i te 540, ka 0.
\frac{-2q^{2}+36q}{-2}=\frac{0}{-2}
Whakawehea ngā taha e rua ki te -2.
q^{2}+\frac{36}{-2}q=\frac{0}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
q^{2}-18q=\frac{0}{-2}
Whakawehe 36 ki te -2.
q^{2}-18q=0
Whakawehe 0 ki te -2.
q^{2}-18q+\left(-9\right)^{2}=\left(-9\right)^{2}
Whakawehea te -18, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -9. Nā, tāpiria te pūrua o te -9 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}-18q+81=81
Pūrua -9.
\left(q-9\right)^{2}=81
Tauwehea q^{2}-18q+81. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-9\right)^{2}}=\sqrt{81}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q-9=9 q-9=-9
Whakarūnātia.
q=18 q=0
Me tāpiri 9 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}