Tīpoka ki ngā ihirangi matua
Whakaoti mō q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

q^{2}+22q-25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-22±\sqrt{22^{2}-4\left(-25\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 22 mō b, me -25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-22±\sqrt{484-4\left(-25\right)}}{2}
Pūrua 22.
q=\frac{-22±\sqrt{484+100}}{2}
Whakareatia -4 ki te -25.
q=\frac{-22±\sqrt{584}}{2}
Tāpiri 484 ki te 100.
q=\frac{-22±2\sqrt{146}}{2}
Tuhia te pūtakerua o te 584.
q=\frac{2\sqrt{146}-22}{2}
Nā, me whakaoti te whārite q=\frac{-22±2\sqrt{146}}{2} ina he tāpiri te ±. Tāpiri -22 ki te 2\sqrt{146}.
q=\sqrt{146}-11
Whakawehe -22+2\sqrt{146} ki te 2.
q=\frac{-2\sqrt{146}-22}{2}
Nā, me whakaoti te whārite q=\frac{-22±2\sqrt{146}}{2} ina he tango te ±. Tango 2\sqrt{146} mai i -22.
q=-\sqrt{146}-11
Whakawehe -22-2\sqrt{146} ki te 2.
q=\sqrt{146}-11 q=-\sqrt{146}-11
Kua oti te whārite te whakatau.
q^{2}+22q-25=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
q^{2}+22q-25-\left(-25\right)=-\left(-25\right)
Me tāpiri 25 ki ngā taha e rua o te whārite.
q^{2}+22q=-\left(-25\right)
Mā te tango i te -25 i a ia ake anō ka toe ko te 0.
q^{2}+22q=25
Tango -25 mai i 0.
q^{2}+22q+11^{2}=25+11^{2}
Whakawehea te 22, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 11. Nā, tāpiria te pūrua o te 11 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}+22q+121=25+121
Pūrua 11.
q^{2}+22q+121=146
Tāpiri 25 ki te 121.
\left(q+11\right)^{2}=146
Tauwehea q^{2}+22q+121. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q+11\right)^{2}}=\sqrt{146}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q+11=\sqrt{146} q+11=-\sqrt{146}
Whakarūnātia.
q=\sqrt{146}-11 q=-\sqrt{146}-11
Me tango 11 mai i ngā taha e rua o te whārite.