Whakaoti mō p
p=-\frac{q}{q+1}
q\neq -1
Whakaoti mō q
q=-\frac{p}{p+1}
p\neq -1
Tohaina
Kua tāruatia ki te papatopenga
pq+p=-q
Tangohia te q mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(q+1\right)p=-q
Pahekotia ngā kīanga tau katoa e whai ana i te p.
\frac{\left(q+1\right)p}{q+1}=-\frac{q}{q+1}
Whakawehea ngā taha e rua ki te q+1.
p=-\frac{q}{q+1}
Mā te whakawehe ki te q+1 ka wetekia te whakareanga ki te q+1.
pq+q=-p
Tangohia te p mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(p+1\right)q=-p
Pahekotia ngā kīanga tau katoa e whai ana i te q.
\frac{\left(p+1\right)q}{p+1}=-\frac{p}{p+1}
Whakawehea ngā taha e rua ki te p+1.
q=-\frac{p}{p+1}
Mā te whakawehe ki te p+1 ka wetekia te whakareanga ki te p+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}