Whakaoti mō p
p=49
Tohaina
Kua tāruatia ki te papatopenga
-4\sqrt{p}=21-p
Me tango p mai i ngā taha e rua o te whārite.
\left(-4\sqrt{p}\right)^{2}=\left(21-p\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-4\right)^{2}\left(\sqrt{p}\right)^{2}=\left(21-p\right)^{2}
Whakarohaina te \left(-4\sqrt{p}\right)^{2}.
16\left(\sqrt{p}\right)^{2}=\left(21-p\right)^{2}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
16p=\left(21-p\right)^{2}
Tātaihia te \sqrt{p} mā te pū o 2, kia riro ko p.
16p=441-42p+p^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(21-p\right)^{2}.
16p-441=-42p+p^{2}
Tangohia te 441 mai i ngā taha e rua.
16p-441+42p=p^{2}
Me tāpiri te 42p ki ngā taha e rua.
58p-441=p^{2}
Pahekotia te 16p me 42p, ka 58p.
58p-441-p^{2}=0
Tangohia te p^{2} mai i ngā taha e rua.
-p^{2}+58p-441=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=58 ab=-\left(-441\right)=441
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -p^{2}+ap+bp-441. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,441 3,147 7,63 9,49 21,21
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 441.
1+441=442 3+147=150 7+63=70 9+49=58 21+21=42
Tātaihia te tapeke mō ia takirua.
a=49 b=9
Ko te otinga te takirua ka hoatu i te tapeke 58.
\left(-p^{2}+49p\right)+\left(9p-441\right)
Tuhia anō te -p^{2}+58p-441 hei \left(-p^{2}+49p\right)+\left(9p-441\right).
-p\left(p-49\right)+9\left(p-49\right)
Tauwehea te -p i te tuatahi me te 9 i te rōpū tuarua.
\left(p-49\right)\left(-p+9\right)
Whakatauwehea atu te kīanga pātahi p-49 mā te whakamahi i te āhuatanga tātai tohatoha.
p=49 p=9
Hei kimi otinga whārite, me whakaoti te p-49=0 me te -p+9=0.
49-4\sqrt{49}=21
Whakakapia te 49 mō te p i te whārite p-4\sqrt{p}=21.
21=21
Whakarūnātia. Ko te uara p=49 kua ngata te whārite.
9-4\sqrt{9}=21
Whakakapia te 9 mō te p i te whārite p-4\sqrt{p}=21.
-3=21
Whakarūnātia. Ko te uara p=9 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
p=49
Ko te whārite -4\sqrt{p}=21-p he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}