Whakaoti mō p
p=7
Tohaina
Kua tāruatia ki te papatopenga
\left(p-1\right)^{2}=\left(\sqrt{50-2p}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
p^{2}-2p+1=\left(\sqrt{50-2p}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(p-1\right)^{2}.
p^{2}-2p+1=50-2p
Tātaihia te \sqrt{50-2p} mā te pū o 2, kia riro ko 50-2p.
p^{2}-2p+1-50=-2p
Tangohia te 50 mai i ngā taha e rua.
p^{2}-2p-49=-2p
Tangohia te 50 i te 1, ka -49.
p^{2}-2p-49+2p=0
Me tāpiri te 2p ki ngā taha e rua.
p^{2}-49=0
Pahekotia te -2p me 2p, ka 0.
\left(p-7\right)\left(p+7\right)=0
Whakaarohia te p^{2}-49. Tuhia anō te p^{2}-49 hei p^{2}-7^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
p=7 p=-7
Hei kimi otinga whārite, me whakaoti te p-7=0 me te p+7=0.
7-1=\sqrt{50-2\times 7}
Whakakapia te 7 mō te p i te whārite p-1=\sqrt{50-2p}.
6=6
Whakarūnātia. Ko te uara p=7 kua ngata te whārite.
-7-1=\sqrt{50-2\left(-7\right)}
Whakakapia te -7 mō te p i te whārite p-1=\sqrt{50-2p}.
-8=8
Whakarūnātia. Ko te uara p=-7 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
p=7
Ko te whārite p-1=\sqrt{50-2p} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}