Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-6x+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 4}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-16}}{2}
Whakareatia -4 ki te 4.
x=\frac{-\left(-6\right)±\sqrt{20}}{2}
Tāpiri 36 ki te -16.
x=\frac{-\left(-6\right)±2\sqrt{5}}{2}
Tuhia te pūtakerua o te 20.
x=\frac{6±2\sqrt{5}}{2}
Ko te tauaro o -6 ko 6.
x=\frac{2\sqrt{5}+6}{2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{5}.
x=\sqrt{5}+3
Whakawehe 6+2\sqrt{5} ki te 2.
x=\frac{6-2\sqrt{5}}{2}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{5}}{2} ina he tango te ±. Tango 2\sqrt{5} mai i 6.
x=3-\sqrt{5}
Whakawehe 6-2\sqrt{5} ki te 2.
x^{2}-6x+4=\left(x-\left(\sqrt{5}+3\right)\right)\left(x-\left(3-\sqrt{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3+\sqrt{5} mō te x_{1} me te 3-\sqrt{5} mō te x_{2}.