Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5x^{2}-10x-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100+20\left(-2\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-\left(-10\right)±\sqrt{100-40}}{2\left(-5\right)}
Whakareatia 20 ki te -2.
x=\frac{-\left(-10\right)±\sqrt{60}}{2\left(-5\right)}
Tāpiri 100 ki te -40.
x=\frac{-\left(-10\right)±2\sqrt{15}}{2\left(-5\right)}
Tuhia te pūtakerua o te 60.
x=\frac{10±2\sqrt{15}}{2\left(-5\right)}
Ko te tauaro o -10 ko 10.
x=\frac{10±2\sqrt{15}}{-10}
Whakareatia 2 ki te -5.
x=\frac{2\sqrt{15}+10}{-10}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{15}}{-10} ina he tāpiri te ±. Tāpiri 10 ki te 2\sqrt{15}.
x=-\frac{\sqrt{15}}{5}-1
Whakawehe 10+2\sqrt{15} ki te -10.
x=\frac{10-2\sqrt{15}}{-10}
Nā, me whakaoti te whārite x=\frac{10±2\sqrt{15}}{-10} ina he tango te ±. Tango 2\sqrt{15} mai i 10.
x=\frac{\sqrt{15}}{5}-1
Whakawehe 10-2\sqrt{15} ki te -10.
-5x^{2}-10x-2=-5\left(x-\left(-\frac{\sqrt{15}}{5}-1\right)\right)\left(x-\left(\frac{\sqrt{15}}{5}-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1-\frac{\sqrt{15}}{5} mō te x_{1} me te -1+\frac{\sqrt{15}}{5} mō te x_{2}.