Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

p\left(p-1\right)
Tauwehea te p.
p^{2}-p=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
p=\frac{-\left(-1\right)±\sqrt{1}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-\left(-1\right)±1}{2}
Tuhia te pūtakerua o te 1.
p=\frac{1±1}{2}
Ko te tauaro o -1 ko 1.
p=\frac{2}{2}
Nā, me whakaoti te whārite p=\frac{1±1}{2} ina he tāpiri te ±. Tāpiri 1 ki te 1.
p=1
Whakawehe 2 ki te 2.
p=\frac{0}{2}
Nā, me whakaoti te whārite p=\frac{1±1}{2} ina he tango te ±. Tango 1 mai i 1.
p=0
Whakawehe 0 ki te 2.
p^{2}-p=\left(p-1\right)p
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te 0 mō te x_{2}.