Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-9 ab=18
Hei whakaoti i te whārite, whakatauwehea te p^{2}-9p+18 mā te whakamahi i te tātai p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-18 -2,-9 -3,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
-1-18=-19 -2-9=-11 -3-6=-9
Tātaihia te tapeke mō ia takirua.
a=-6 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(p-6\right)\left(p-3\right)
Me tuhi anō te kīanga whakatauwehe \left(p+a\right)\left(p+b\right) mā ngā uara i tātaihia.
p=6 p=3
Hei kimi otinga whārite, me whakaoti te p-6=0 me te p-3=0.
a+b=-9 ab=1\times 18=18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei p^{2}+ap+bp+18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-18 -2,-9 -3,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
-1-18=-19 -2-9=-11 -3-6=-9
Tātaihia te tapeke mō ia takirua.
a=-6 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(p^{2}-6p\right)+\left(-3p+18\right)
Tuhia anō te p^{2}-9p+18 hei \left(p^{2}-6p\right)+\left(-3p+18\right).
p\left(p-6\right)-3\left(p-6\right)
Tauwehea te p i te tuatahi me te -3 i te rōpū tuarua.
\left(p-6\right)\left(p-3\right)
Whakatauwehea atu te kīanga pātahi p-6 mā te whakamahi i te āhuatanga tātai tohatoha.
p=6 p=3
Hei kimi otinga whārite, me whakaoti te p-6=0 me te p-3=0.
p^{2}-9p+18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 18}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -9 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-9\right)±\sqrt{81-4\times 18}}{2}
Pūrua -9.
p=\frac{-\left(-9\right)±\sqrt{81-72}}{2}
Whakareatia -4 ki te 18.
p=\frac{-\left(-9\right)±\sqrt{9}}{2}
Tāpiri 81 ki te -72.
p=\frac{-\left(-9\right)±3}{2}
Tuhia te pūtakerua o te 9.
p=\frac{9±3}{2}
Ko te tauaro o -9 ko 9.
p=\frac{12}{2}
Nā, me whakaoti te whārite p=\frac{9±3}{2} ina he tāpiri te ±. Tāpiri 9 ki te 3.
p=6
Whakawehe 12 ki te 2.
p=\frac{6}{2}
Nā, me whakaoti te whārite p=\frac{9±3}{2} ina he tango te ±. Tango 3 mai i 9.
p=3
Whakawehe 6 ki te 2.
p=6 p=3
Kua oti te whārite te whakatau.
p^{2}-9p+18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
p^{2}-9p+18-18=-18
Me tango 18 mai i ngā taha e rua o te whārite.
p^{2}-9p=-18
Mā te tango i te 18 i a ia ake anō ka toe ko te 0.
p^{2}-9p+\left(-\frac{9}{2}\right)^{2}=-18+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-9p+\frac{81}{4}=-18+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}-9p+\frac{81}{4}=\frac{9}{4}
Tāpiri -18 ki te \frac{81}{4}.
\left(p-\frac{9}{2}\right)^{2}=\frac{9}{4}
Tauwehea p^{2}-9p+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{9}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-\frac{9}{2}=\frac{3}{2} p-\frac{9}{2}=-\frac{3}{2}
Whakarūnātia.
p=6 p=3
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.