Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-8 ab=1\times 7=7
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei p^{2}+ap+bp+7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-7 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(p^{2}-7p\right)+\left(-p+7\right)
Tuhia anō te p^{2}-8p+7 hei \left(p^{2}-7p\right)+\left(-p+7\right).
p\left(p-7\right)-\left(p-7\right)
Tauwehea te p i te tuatahi me te -1 i te rōpū tuarua.
\left(p-7\right)\left(p-1\right)
Whakatauwehea atu te kīanga pātahi p-7 mā te whakamahi i te āhuatanga tātai tohatoha.
p^{2}-8p+7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
p=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Pūrua -8.
p=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Whakareatia -4 ki te 7.
p=\frac{-\left(-8\right)±\sqrt{36}}{2}
Tāpiri 64 ki te -28.
p=\frac{-\left(-8\right)±6}{2}
Tuhia te pūtakerua o te 36.
p=\frac{8±6}{2}
Ko te tauaro o -8 ko 8.
p=\frac{14}{2}
Nā, me whakaoti te whārite p=\frac{8±6}{2} ina he tāpiri te ±. Tāpiri 8 ki te 6.
p=7
Whakawehe 14 ki te 2.
p=\frac{2}{2}
Nā, me whakaoti te whārite p=\frac{8±6}{2} ina he tango te ±. Tango 6 mai i 8.
p=1
Whakawehe 2 ki te 2.
p^{2}-8p+7=\left(p-7\right)\left(p-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7 mō te x_{1} me te 1 mō te x_{2}.