Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

p^{2}+p-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-1±\sqrt{1^{2}-4\left(-4\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 1 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-1±\sqrt{1-4\left(-4\right)}}{2}
Pūrua 1.
p=\frac{-1±\sqrt{1+16}}{2}
Whakareatia -4 ki te -4.
p=\frac{-1±\sqrt{17}}{2}
Tāpiri 1 ki te 16.
p=\frac{\sqrt{17}-1}{2}
Nā, me whakaoti te whārite p=\frac{-1±\sqrt{17}}{2} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{17}.
p=\frac{-\sqrt{17}-1}{2}
Nā, me whakaoti te whārite p=\frac{-1±\sqrt{17}}{2} ina he tango te ±. Tango \sqrt{17} mai i -1.
p=\frac{\sqrt{17}-1}{2} p=\frac{-\sqrt{17}-1}{2}
Kua oti te whārite te whakatau.
p^{2}+p-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
p^{2}+p-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
p^{2}+p=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
p^{2}+p=4
Tango -4 mai i 0.
p^{2}+p+\left(\frac{1}{2}\right)^{2}=4+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}+p+\frac{1}{4}=4+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}+p+\frac{1}{4}=\frac{17}{4}
Tāpiri 4 ki te \frac{1}{4}.
\left(p+\frac{1}{2}\right)^{2}=\frac{17}{4}
Tauwehea p^{2}+p+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p+\frac{1}{2}=\frac{\sqrt{17}}{2} p+\frac{1}{2}=-\frac{\sqrt{17}}{2}
Whakarūnātia.
p=\frac{\sqrt{17}-1}{2} p=\frac{-\sqrt{17}-1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.