Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

p^{2}-4p=12
Tangohia te 4p mai i ngā taha e rua.
p^{2}-4p-12=0
Tangohia te 12 mai i ngā taha e rua.
a+b=-4 ab=-12
Hei whakaoti i te whārite, whakatauwehea te p^{2}-4p-12 mā te whakamahi i te tātai p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(p-6\right)\left(p+2\right)
Me tuhi anō te kīanga whakatauwehe \left(p+a\right)\left(p+b\right) mā ngā uara i tātaihia.
p=6 p=-2
Hei kimi otinga whārite, me whakaoti te p-6=0 me te p+2=0.
p^{2}-4p=12
Tangohia te 4p mai i ngā taha e rua.
p^{2}-4p-12=0
Tangohia te 12 mai i ngā taha e rua.
a+b=-4 ab=1\left(-12\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei p^{2}+ap+bp-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(p^{2}-6p\right)+\left(2p-12\right)
Tuhia anō te p^{2}-4p-12 hei \left(p^{2}-6p\right)+\left(2p-12\right).
p\left(p-6\right)+2\left(p-6\right)
Tauwehea te p i te tuatahi me te 2 i te rōpū tuarua.
\left(p-6\right)\left(p+2\right)
Whakatauwehea atu te kīanga pātahi p-6 mā te whakamahi i te āhuatanga tātai tohatoha.
p=6 p=-2
Hei kimi otinga whārite, me whakaoti te p-6=0 me te p+2=0.
p^{2}-4p=12
Tangohia te 4p mai i ngā taha e rua.
p^{2}-4p-12=0
Tangohia te 12 mai i ngā taha e rua.
p=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Pūrua -4.
p=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Whakareatia -4 ki te -12.
p=\frac{-\left(-4\right)±\sqrt{64}}{2}
Tāpiri 16 ki te 48.
p=\frac{-\left(-4\right)±8}{2}
Tuhia te pūtakerua o te 64.
p=\frac{4±8}{2}
Ko te tauaro o -4 ko 4.
p=\frac{12}{2}
Nā, me whakaoti te whārite p=\frac{4±8}{2} ina he tāpiri te ±. Tāpiri 4 ki te 8.
p=6
Whakawehe 12 ki te 2.
p=-\frac{4}{2}
Nā, me whakaoti te whārite p=\frac{4±8}{2} ina he tango te ±. Tango 8 mai i 4.
p=-2
Whakawehe -4 ki te 2.
p=6 p=-2
Kua oti te whārite te whakatau.
p^{2}-4p=12
Tangohia te 4p mai i ngā taha e rua.
p^{2}-4p+\left(-2\right)^{2}=12+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-4p+4=12+4
Pūrua -2.
p^{2}-4p+4=16
Tāpiri 12 ki te 4.
\left(p-2\right)^{2}=16
Tauwehea p^{2}-4p+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-2\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-2=4 p-2=-4
Whakarūnātia.
p=6 p=-2
Me tāpiri 2 ki ngā taha e rua o te whārite.