Whakaoti mō p
p=-2
p=4
Tohaina
Kua tāruatia ki te papatopenga
\left(p-3\right)p+\left(p-3\right)\times 2=p+2
Tē taea kia ōrite te tāupe p ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te p-3.
p^{2}-3p+\left(p-3\right)\times 2=p+2
Whakamahia te āhuatanga tohatoha hei whakarea te p-3 ki te p.
p^{2}-3p+2p-6=p+2
Whakamahia te āhuatanga tohatoha hei whakarea te p-3 ki te 2.
p^{2}-p-6=p+2
Pahekotia te -3p me 2p, ka -p.
p^{2}-p-6-p=2
Tangohia te p mai i ngā taha e rua.
p^{2}-2p-6=2
Pahekotia te -p me -p, ka -2p.
p^{2}-2p-6-2=0
Tangohia te 2 mai i ngā taha e rua.
p^{2}-2p-8=0
Tangohia te 2 i te -6, ka -8.
p=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
Pūrua -2.
p=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
Whakareatia -4 ki te -8.
p=\frac{-\left(-2\right)±\sqrt{36}}{2}
Tāpiri 4 ki te 32.
p=\frac{-\left(-2\right)±6}{2}
Tuhia te pūtakerua o te 36.
p=\frac{2±6}{2}
Ko te tauaro o -2 ko 2.
p=\frac{8}{2}
Nā, me whakaoti te whārite p=\frac{2±6}{2} ina he tāpiri te ±. Tāpiri 2 ki te 6.
p=4
Whakawehe 8 ki te 2.
p=-\frac{4}{2}
Nā, me whakaoti te whārite p=\frac{2±6}{2} ina he tango te ±. Tango 6 mai i 2.
p=-2
Whakawehe -4 ki te 2.
p=4 p=-2
Kua oti te whārite te whakatau.
\left(p-3\right)p+\left(p-3\right)\times 2=p+2
Tē taea kia ōrite te tāupe p ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te p-3.
p^{2}-3p+\left(p-3\right)\times 2=p+2
Whakamahia te āhuatanga tohatoha hei whakarea te p-3 ki te p.
p^{2}-3p+2p-6=p+2
Whakamahia te āhuatanga tohatoha hei whakarea te p-3 ki te 2.
p^{2}-p-6=p+2
Pahekotia te -3p me 2p, ka -p.
p^{2}-p-6-p=2
Tangohia te p mai i ngā taha e rua.
p^{2}-2p-6=2
Pahekotia te -p me -p, ka -2p.
p^{2}-2p=2+6
Me tāpiri te 6 ki ngā taha e rua.
p^{2}-2p=8
Tāpirihia te 2 ki te 6, ka 8.
p^{2}-2p+1=8+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-2p+1=9
Tāpiri 8 ki te 1.
\left(p-1\right)^{2}=9
Tauwehea p^{2}-2p+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-1\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-1=3 p-1=-3
Whakarūnātia.
p=4 p=-2
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}