Aromātai
128\sqrt{2}o
Kimi Pārōnaki e ai ki o
128 \sqrt{2} = 181.019335984
Tohaina
Kua tāruatia ki te papatopenga
o\left(\sqrt[3]{\sqrt[3]{512}}\right)^{5}\left(\sqrt[6]{\sqrt[3]{2^{9}}}\right)^{5}
Tātaihia te 2 mā te pū o 9, kia riro ko 512.
o\left(\sqrt[3]{8}\right)^{5}\left(\sqrt[6]{\sqrt[3]{2^{9}}}\right)^{5}
Tātaitia te \sqrt[3]{512} kia tae ki 8.
o\times 2^{5}\left(\sqrt[6]{\sqrt[3]{2^{9}}}\right)^{5}
Tātaitia te \sqrt[3]{8} kia tae ki 2.
o\times 32\left(\sqrt[6]{\sqrt[3]{2^{9}}}\right)^{5}
Tātaihia te 2 mā te pū o 5, kia riro ko 32.
o\times 32\left(\sqrt[6]{\sqrt[3]{512}}\right)^{5}
Tātaihia te 2 mā te pū o 9, kia riro ko 512.
o\times 32\left(\sqrt[6]{8}\right)^{5}
Tātaitia te \sqrt[3]{512} kia tae ki 8.
\sqrt[6]{8}=\sqrt[6]{2^{3}}=2^{\frac{3}{6}}=2^{\frac{1}{2}}=\sqrt{2}
Me tuhi anō te \sqrt[6]{8} ko \sqrt[6]{2^{3}}. Tahuritia i te āhua pūtake ki te āhua taupū ka whakakore i te 3 i te taupū. Tahuri anō ki te āhua pūtake.
o\times 32\left(\sqrt{2}\right)^{5}
Me kōkuhu anō te uara i whiwhi i te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}