Whakaoti mō x
x=\frac{\left(n+2\right)\left(n+3\right)}{n-1}
n\neq 1
Whakaoti mō n (complex solution)
n=\frac{-\sqrt{x^{2}-14x+1}+x-5}{2}
n=\frac{\sqrt{x^{2}-14x+1}+x-5}{2}
Whakaoti mō n
n=\frac{-\sqrt{x^{2}-14x+1}+x-5}{2}
n=\frac{\sqrt{x^{2}-14x+1}+x-5}{2}\text{, }x\geq 4\sqrt{3}+7\text{ or }x\leq 7-4\sqrt{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
nx-x=n^{2}+5n+6
Whakamahia te āhuatanga tuaritanga hei whakarea te n+3 ki te n+2 ka whakakotahi i ngā kupu rite.
\left(n-1\right)x=n^{2}+5n+6
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(n-1\right)x}{n-1}=\frac{\left(n+2\right)\left(n+3\right)}{n-1}
Whakawehea ngā taha e rua ki te n-1.
x=\frac{\left(n+2\right)\left(n+3\right)}{n-1}
Mā te whakawehe ki te n-1 ka wetekia te whakareanga ki te n-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}