Whakaoti mō n
n = \frac{21}{4} = 5\frac{1}{4} = 5.25
Tohaina
Kua tāruatia ki te papatopenga
12n-2\left(3\times 6+5\right)=1\times 12+5
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 6,12.
12n-2\left(18+5\right)=1\times 12+5
Whakareatia te 3 ki te 6, ka 18.
12n-2\times 23=1\times 12+5
Tāpirihia te 18 ki te 5, ka 23.
12n-46=1\times 12+5
Whakareatia te -2 ki te 23, ka -46.
12n-46=12+5
Whakareatia te 1 ki te 12, ka 12.
12n-46=17
Tāpirihia te 12 ki te 5, ka 17.
12n=17+46
Me tāpiri te 46 ki ngā taha e rua.
12n=63
Tāpirihia te 17 ki te 46, ka 63.
n=\frac{63}{12}
Whakawehea ngā taha e rua ki te 12.
n=\frac{21}{4}
Whakahekea te hautanga \frac{63}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}