Whakaoti mō n
n=\frac{-5+\sqrt{11}i}{9}\approx -0.555555556+0.368513866i
n=\frac{-\sqrt{11}i-5}{9}\approx -0.555555556-0.368513866i
Tohaina
Kua tāruatia ki te papatopenga
9n^{2}+10n+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 9n+10.
n=\frac{-10±\sqrt{10^{2}-4\times 9\times 4}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 10 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-10±\sqrt{100-4\times 9\times 4}}{2\times 9}
Pūrua 10.
n=\frac{-10±\sqrt{100-36\times 4}}{2\times 9}
Whakareatia -4 ki te 9.
n=\frac{-10±\sqrt{100-144}}{2\times 9}
Whakareatia -36 ki te 4.
n=\frac{-10±\sqrt{-44}}{2\times 9}
Tāpiri 100 ki te -144.
n=\frac{-10±2\sqrt{11}i}{2\times 9}
Tuhia te pūtakerua o te -44.
n=\frac{-10±2\sqrt{11}i}{18}
Whakareatia 2 ki te 9.
n=\frac{-10+2\sqrt{11}i}{18}
Nā, me whakaoti te whārite n=\frac{-10±2\sqrt{11}i}{18} ina he tāpiri te ±. Tāpiri -10 ki te 2i\sqrt{11}.
n=\frac{-5+\sqrt{11}i}{9}
Whakawehe -10+2i\sqrt{11} ki te 18.
n=\frac{-2\sqrt{11}i-10}{18}
Nā, me whakaoti te whārite n=\frac{-10±2\sqrt{11}i}{18} ina he tango te ±. Tango 2i\sqrt{11} mai i -10.
n=\frac{-\sqrt{11}i-5}{9}
Whakawehe -10-2i\sqrt{11} ki te 18.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
Kua oti te whārite te whakatau.
9n^{2}+10n+4=0
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 9n+10.
9n^{2}+10n=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{9n^{2}+10n}{9}=-\frac{4}{9}
Whakawehea ngā taha e rua ki te 9.
n^{2}+\frac{10}{9}n=-\frac{4}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
n^{2}+\frac{10}{9}n+\left(\frac{5}{9}\right)^{2}=-\frac{4}{9}+\left(\frac{5}{9}\right)^{2}
Whakawehea te \frac{10}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{9}. Nā, tāpiria te pūrua o te \frac{5}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{4}{9}+\frac{25}{81}
Pūruatia \frac{5}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{11}{81}
Tāpiri -\frac{4}{9} ki te \frac{25}{81} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n+\frac{5}{9}\right)^{2}=-\frac{11}{81}
Tauwehea n^{2}+\frac{10}{9}n+\frac{25}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{5}{9}\right)^{2}}=\sqrt{-\frac{11}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{5}{9}=\frac{\sqrt{11}i}{9} n+\frac{5}{9}=-\frac{\sqrt{11}i}{9}
Whakarūnātia.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
Me tango \frac{5}{9} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}