Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n\left(-\frac{1}{2n}-\frac{1}{2n+2}\right)
Tangohia te \frac{3}{4} i te \frac{3}{4}, ka 0.
n\left(-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\right)
Tauwehea te 2n+2.
n\left(-\frac{n+1}{2n\left(n+1\right)}-\frac{n}{2n\left(n+1\right)}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2n me 2\left(n+1\right) ko 2n\left(n+1\right). Whakareatia -\frac{1}{2n} ki te \frac{n+1}{n+1}. Whakareatia \frac{1}{2\left(n+1\right)} ki te \frac{n}{n}.
n\times \frac{-\left(n+1\right)-n}{2n\left(n+1\right)}
Tā te mea he rite te tauraro o -\frac{n+1}{2n\left(n+1\right)} me \frac{n}{2n\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
n\times \frac{-n-1-n}{2n\left(n+1\right)}
Mahia ngā whakarea i roto o -\left(n+1\right)-n.
n\times \frac{-2n-1}{2n\left(n+1\right)}
Whakakotahitia ngā kupu rite i -n-1-n.
\frac{n\left(-2n-1\right)}{2n\left(n+1\right)}
Tuhia te n\times \frac{-2n-1}{2n\left(n+1\right)} hei hautanga kotahi.
\frac{-2n-1}{2\left(n+1\right)}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{-2n-1}{2n+2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te n+1.
n\left(-\frac{1}{2n}-\frac{1}{2n+2}\right)
Tangohia te \frac{3}{4} i te \frac{3}{4}, ka 0.
n\left(-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\right)
Tauwehea te 2n+2.
n\left(-\frac{n+1}{2n\left(n+1\right)}-\frac{n}{2n\left(n+1\right)}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2n me 2\left(n+1\right) ko 2n\left(n+1\right). Whakareatia -\frac{1}{2n} ki te \frac{n+1}{n+1}. Whakareatia \frac{1}{2\left(n+1\right)} ki te \frac{n}{n}.
n\times \frac{-\left(n+1\right)-n}{2n\left(n+1\right)}
Tā te mea he rite te tauraro o -\frac{n+1}{2n\left(n+1\right)} me \frac{n}{2n\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
n\times \frac{-n-1-n}{2n\left(n+1\right)}
Mahia ngā whakarea i roto o -\left(n+1\right)-n.
n\times \frac{-2n-1}{2n\left(n+1\right)}
Whakakotahitia ngā kupu rite i -n-1-n.
\frac{n\left(-2n-1\right)}{2n\left(n+1\right)}
Tuhia te n\times \frac{-2n-1}{2n\left(n+1\right)} hei hautanga kotahi.
\frac{-2n-1}{2\left(n+1\right)}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{-2n-1}{2n+2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te n+1.