Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n\left(n^{4}-5n^{2}+4\right)
Tauwehea te n.
\left(n^{2}-4\right)\left(n^{2}-1\right)
Whakaarohia te n^{4}-5n^{2}+4. Kimihia he tauwehe o te āhua n^{k}+m, e wehea ai e n^{k} te huatahi me te pū nui rawa n^{4}, e wehea hoki e m te tauwehe pūmau 4. Ko tētahi tauwehe pērā ko n^{2}-4. Whakatauwehea te pūrau mā te whakawehe ki tēnei tauwehe.
\left(n-2\right)\left(n+2\right)
Whakaarohia te n^{2}-4. Tuhia anō te n^{2}-4 hei n^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(n-1\right)\left(n+1\right)
Whakaarohia te n^{2}-1. Tuhia anō te n^{2}-1 hei n^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.