Whakaoti mō n (complex solution)
n=-3\sqrt{3}i+3\approx 3-5.196152423i
n=-6
n=3+3\sqrt{3}i\approx 3+5.196152423i
Whakaoti mō n
n=-6
Tohaina
Kua tāruatia ki te papatopenga
n^{3}+216=0
Me tāpiri te 216 ki ngā taha e rua.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 216, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
n=-6
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
n^{2}-6n+36=0
Mā te whakatakotoranga Tauwehe, he tauwehe te n-k o te pūrau mō ia pūtake k. Whakawehea te n^{3}+216 ki te n+6, kia riro ko n^{2}-6n+36. Whakaotihia te whārite ina ōrite te hua ki te 0.
n=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 36}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -6 mō te b, me te 36 mō te c i te ture pūrua.
n=\frac{6±\sqrt{-108}}{2}
Mahia ngā tātaitai.
n=-3i\sqrt{3}+3 n=3+3i\sqrt{3}
Whakaotia te whārite n^{2}-6n+36=0 ina he tōrunga te ±, ina he tōraro te ±.
n=-6 n=-3i\sqrt{3}+3 n=3+3i\sqrt{3}
Rārangitia ngā otinga katoa i kitea.
n^{3}+216=0
Me tāpiri te 216 ki ngā taha e rua.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 216, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
n=-6
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
n^{2}-6n+36=0
Mā te whakatakotoranga Tauwehe, he tauwehe te n-k o te pūrau mō ia pūtake k. Whakawehea te n^{3}+216 ki te n+6, kia riro ko n^{2}-6n+36. Whakaotihia te whārite ina ōrite te hua ki te 0.
n=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 36}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -6 mō te b, me te 36 mō te c i te ture pūrua.
n=\frac{6±\sqrt{-108}}{2}
Mahia ngā tātaitai.
n\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
n=-6
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}