Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}-n-1454=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-1454\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-1\right)±\sqrt{1+5816}}{2}
Whakareatia -4 ki te -1454.
n=\frac{-\left(-1\right)±\sqrt{5817}}{2}
Tāpiri 1 ki te 5816.
n=\frac{1±\sqrt{5817}}{2}
Ko te tauaro o -1 ko 1.
n=\frac{\sqrt{5817}+1}{2}
Nā, me whakaoti te whārite n=\frac{1±\sqrt{5817}}{2} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{5817}.
n=\frac{1-\sqrt{5817}}{2}
Nā, me whakaoti te whārite n=\frac{1±\sqrt{5817}}{2} ina he tango te ±. Tango \sqrt{5817} mai i 1.
n^{2}-n-1454=\left(n-\frac{\sqrt{5817}+1}{2}\right)\left(n-\frac{1-\sqrt{5817}}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1+\sqrt{5817}}{2} mō te x_{1} me te \frac{1-\sqrt{5817}}{2} mō te x_{2}.