Whakaoti mō n
n=-15
n=16
Tohaina
Kua tāruatia ki te papatopenga
n^{2}-n-240=0
Tangohia te 240 mai i ngā taha e rua.
a+b=-1 ab=-240
Hei whakaoti i te whārite, whakatauwehea te n^{2}-n-240 mā te whakamahi i te tātai n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -240.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
Tātaihia te tapeke mō ia takirua.
a=-16 b=15
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(n-16\right)\left(n+15\right)
Me tuhi anō te kīanga whakatauwehe \left(n+a\right)\left(n+b\right) mā ngā uara i tātaihia.
n=16 n=-15
Hei kimi otinga whārite, me whakaoti te n-16=0 me te n+15=0.
n^{2}-n-240=0
Tangohia te 240 mai i ngā taha e rua.
a+b=-1 ab=1\left(-240\right)=-240
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei n^{2}+an+bn-240. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -240.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
Tātaihia te tapeke mō ia takirua.
a=-16 b=15
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(n^{2}-16n\right)+\left(15n-240\right)
Tuhia anō te n^{2}-n-240 hei \left(n^{2}-16n\right)+\left(15n-240\right).
n\left(n-16\right)+15\left(n-16\right)
Tauwehea te n i te tuatahi me te 15 i te rōpū tuarua.
\left(n-16\right)\left(n+15\right)
Whakatauwehea atu te kīanga pātahi n-16 mā te whakamahi i te āhuatanga tātai tohatoha.
n=16 n=-15
Hei kimi otinga whārite, me whakaoti te n-16=0 me te n+15=0.
n^{2}-n=240
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n^{2}-n-240=240-240
Me tango 240 mai i ngā taha e rua o te whārite.
n^{2}-n-240=0
Mā te tango i te 240 i a ia ake anō ka toe ko te 0.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-240\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -1 mō b, me -240 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-1\right)±\sqrt{1+960}}{2}
Whakareatia -4 ki te -240.
n=\frac{-\left(-1\right)±\sqrt{961}}{2}
Tāpiri 1 ki te 960.
n=\frac{-\left(-1\right)±31}{2}
Tuhia te pūtakerua o te 961.
n=\frac{1±31}{2}
Ko te tauaro o -1 ko 1.
n=\frac{32}{2}
Nā, me whakaoti te whārite n=\frac{1±31}{2} ina he tāpiri te ±. Tāpiri 1 ki te 31.
n=16
Whakawehe 32 ki te 2.
n=-\frac{30}{2}
Nā, me whakaoti te whārite n=\frac{1±31}{2} ina he tango te ±. Tango 31 mai i 1.
n=-15
Whakawehe -30 ki te 2.
n=16 n=-15
Kua oti te whārite te whakatau.
n^{2}-n=240
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=240+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-n+\frac{1}{4}=240+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-n+\frac{1}{4}=\frac{961}{4}
Tāpiri 240 ki te \frac{1}{4}.
\left(n-\frac{1}{2}\right)^{2}=\frac{961}{4}
Tauwehea n^{2}-n+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{961}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{1}{2}=\frac{31}{2} n-\frac{1}{2}=-\frac{31}{2}
Whakarūnātia.
n=16 n=-15
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}