Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}-n=120
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n^{2}-n-120=120-120
Me tango 120 mai i ngā taha e rua o te whārite.
n^{2}-n-120=0
Mā te tango i te 120 i a ia ake anō ka toe ko te 0.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-120\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -1 mō b, me -120 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-1\right)±\sqrt{1+480}}{2}
Whakareatia -4 ki te -120.
n=\frac{-\left(-1\right)±\sqrt{481}}{2}
Tāpiri 1 ki te 480.
n=\frac{1±\sqrt{481}}{2}
Ko te tauaro o -1 ko 1.
n=\frac{\sqrt{481}+1}{2}
Nā, me whakaoti te whārite n=\frac{1±\sqrt{481}}{2} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{481}.
n=\frac{1-\sqrt{481}}{2}
Nā, me whakaoti te whārite n=\frac{1±\sqrt{481}}{2} ina he tango te ±. Tango \sqrt{481} mai i 1.
n=\frac{\sqrt{481}+1}{2} n=\frac{1-\sqrt{481}}{2}
Kua oti te whārite te whakatau.
n^{2}-n=120
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=120+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-n+\frac{1}{4}=120+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-n+\frac{1}{4}=\frac{481}{4}
Tāpiri 120 ki te \frac{1}{4}.
\left(n-\frac{1}{2}\right)^{2}=\frac{481}{4}
Tauwehea n^{2}-n+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{481}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{1}{2}=\frac{\sqrt{481}}{2} n-\frac{1}{2}=-\frac{\sqrt{481}}{2}
Whakarūnātia.
n=\frac{\sqrt{481}+1}{2} n=\frac{1-\sqrt{481}}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.