Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}-8-113n^{2}=-105
Tangohia te 113n^{2} mai i ngā taha e rua.
-112n^{2}-8=-105
Pahekotia te n^{2} me -113n^{2}, ka -112n^{2}.
-112n^{2}=-105+8
Me tāpiri te 8 ki ngā taha e rua.
-112n^{2}=-97
Tāpirihia te -105 ki te 8, ka -97.
n^{2}=\frac{-97}{-112}
Whakawehea ngā taha e rua ki te -112.
n^{2}=\frac{97}{112}
Ka taea te hautanga \frac{-97}{-112} te whakamāmā ki te \frac{97}{112} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
n=\frac{\sqrt{679}}{28} n=-\frac{\sqrt{679}}{28}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n^{2}-8-113n^{2}=-105
Tangohia te 113n^{2} mai i ngā taha e rua.
-112n^{2}-8=-105
Pahekotia te n^{2} me -113n^{2}, ka -112n^{2}.
-112n^{2}-8+105=0
Me tāpiri te 105 ki ngā taha e rua.
-112n^{2}+97=0
Tāpirihia te -8 ki te 105, ka 97.
n=\frac{0±\sqrt{0^{2}-4\left(-112\right)\times 97}}{2\left(-112\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -112 mō a, 0 mō b, me 97 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-112\right)\times 97}}{2\left(-112\right)}
Pūrua 0.
n=\frac{0±\sqrt{448\times 97}}{2\left(-112\right)}
Whakareatia -4 ki te -112.
n=\frac{0±\sqrt{43456}}{2\left(-112\right)}
Whakareatia 448 ki te 97.
n=\frac{0±8\sqrt{679}}{2\left(-112\right)}
Tuhia te pūtakerua o te 43456.
n=\frac{0±8\sqrt{679}}{-224}
Whakareatia 2 ki te -112.
n=-\frac{\sqrt{679}}{28}
Nā, me whakaoti te whārite n=\frac{0±8\sqrt{679}}{-224} ina he tāpiri te ±.
n=\frac{\sqrt{679}}{28}
Nā, me whakaoti te whārite n=\frac{0±8\sqrt{679}}{-224} ina he tango te ±.
n=-\frac{\sqrt{679}}{28} n=\frac{\sqrt{679}}{28}
Kua oti te whārite te whakatau.