Whakaoti mō n
n\in \begin{bmatrix}\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\end{bmatrix}
Tohaina
Kua tāruatia ki te papatopenga
n^{2}-4019n+4036081\leq 0
Tātaihia te 2009 mā te pū o 2, kia riro ko 4036081.
n^{2}-4019n+4036081=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-4019\right)±\sqrt{\left(-4019\right)^{2}-4\times 1\times 4036081}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -4019 mō te b, me te 4036081 mō te c i te ture pūrua.
n=\frac{4019±3\sqrt{893}}{2}
Mahia ngā tātaitai.
n=\frac{3\sqrt{893}+4019}{2} n=\frac{4019-3\sqrt{893}}{2}
Whakaotia te whārite n=\frac{4019±3\sqrt{893}}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(n-\frac{3\sqrt{893}+4019}{2}\right)\left(n-\frac{4019-3\sqrt{893}}{2}\right)\leq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
n-\frac{3\sqrt{893}+4019}{2}\geq 0 n-\frac{4019-3\sqrt{893}}{2}\leq 0
Kia ≤0 te otinga, me ≥0 rawa tētahi uara o n-\frac{3\sqrt{893}+4019}{2} me n-\frac{4019-3\sqrt{893}}{2}, me ≤0 anō te uara o tētahi. Whakaarohia te tauira ina ko n-\frac{3\sqrt{893}+4019}{2}\geq 0 me n-\frac{4019-3\sqrt{893}}{2}\leq 0.
n\in \emptyset
He teka tēnei mō tētahi n ahakoa.
n-\frac{4019-3\sqrt{893}}{2}\geq 0 n-\frac{3\sqrt{893}+4019}{2}\leq 0
Whakaarohia te tauira ina ko n-\frac{3\sqrt{893}+4019}{2}\leq 0 me n-\frac{4019-3\sqrt{893}}{2}\geq 0.
n\in \begin{bmatrix}\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\end{bmatrix}
Te otinga e whakaea i ngā koreōrite e rua ko n\in \left[\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\right].
n\in \begin{bmatrix}\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\end{bmatrix}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}