Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}-4019n+4036081\leq 0
Tātaihia te 2009 mā te pū o 2, kia riro ko 4036081.
n^{2}-4019n+4036081=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-4019\right)±\sqrt{\left(-4019\right)^{2}-4\times 1\times 4036081}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -4019 mō te b, me te 4036081 mō te c i te ture pūrua.
n=\frac{4019±3\sqrt{893}}{2}
Mahia ngā tātaitai.
n=\frac{3\sqrt{893}+4019}{2} n=\frac{4019-3\sqrt{893}}{2}
Whakaotia te whārite n=\frac{4019±3\sqrt{893}}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(n-\frac{3\sqrt{893}+4019}{2}\right)\left(n-\frac{4019-3\sqrt{893}}{2}\right)\leq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
n-\frac{3\sqrt{893}+4019}{2}\geq 0 n-\frac{4019-3\sqrt{893}}{2}\leq 0
Kia ≤0 te otinga, me ≥0 rawa tētahi uara o n-\frac{3\sqrt{893}+4019}{2} me n-\frac{4019-3\sqrt{893}}{2}, me ≤0 anō te uara o tētahi. Whakaarohia te tauira ina ko n-\frac{3\sqrt{893}+4019}{2}\geq 0 me n-\frac{4019-3\sqrt{893}}{2}\leq 0.
n\in \emptyset
He teka tēnei mō tētahi n ahakoa.
n-\frac{4019-3\sqrt{893}}{2}\geq 0 n-\frac{3\sqrt{893}+4019}{2}\leq 0
Whakaarohia te tauira ina ko n-\frac{3\sqrt{893}+4019}{2}\leq 0 me n-\frac{4019-3\sqrt{893}}{2}\geq 0.
n\in \begin{bmatrix}\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\end{bmatrix}
Te otinga e whakaea i ngā koreōrite e rua ko n\in \left[\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\right].
n\in \begin{bmatrix}\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\end{bmatrix}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.