Whakaoti mō n
n = \frac{3 \sqrt{893} + 4019}{2} \approx 2054.324658392
n = \frac{4019 - 3 \sqrt{893}}{2} \approx 1964.675341608
Tohaina
Kua tāruatia ki te papatopenga
n^{2}-4019n+4036081=0
Tātaihia te 2009 mā te pū o 2, kia riro ko 4036081.
n=\frac{-\left(-4019\right)±\sqrt{\left(-4019\right)^{2}-4\times 4036081}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4019 mō b, me 4036081 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-4019\right)±\sqrt{16152361-4\times 4036081}}{2}
Pūrua -4019.
n=\frac{-\left(-4019\right)±\sqrt{16152361-16144324}}{2}
Whakareatia -4 ki te 4036081.
n=\frac{-\left(-4019\right)±\sqrt{8037}}{2}
Tāpiri 16152361 ki te -16144324.
n=\frac{-\left(-4019\right)±3\sqrt{893}}{2}
Tuhia te pūtakerua o te 8037.
n=\frac{4019±3\sqrt{893}}{2}
Ko te tauaro o -4019 ko 4019.
n=\frac{3\sqrt{893}+4019}{2}
Nā, me whakaoti te whārite n=\frac{4019±3\sqrt{893}}{2} ina he tāpiri te ±. Tāpiri 4019 ki te 3\sqrt{893}.
n=\frac{4019-3\sqrt{893}}{2}
Nā, me whakaoti te whārite n=\frac{4019±3\sqrt{893}}{2} ina he tango te ±. Tango 3\sqrt{893} mai i 4019.
n=\frac{3\sqrt{893}+4019}{2} n=\frac{4019-3\sqrt{893}}{2}
Kua oti te whārite te whakatau.
n^{2}-4019n+4036081=0
Tātaihia te 2009 mā te pū o 2, kia riro ko 4036081.
n^{2}-4019n=-4036081
Tangohia te 4036081 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
n^{2}-4019n+\left(-\frac{4019}{2}\right)^{2}=-4036081+\left(-\frac{4019}{2}\right)^{2}
Whakawehea te -4019, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4019}{2}. Nā, tāpiria te pūrua o te -\frac{4019}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-4019n+\frac{16152361}{4}=-4036081+\frac{16152361}{4}
Pūruatia -\frac{4019}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-4019n+\frac{16152361}{4}=\frac{8037}{4}
Tāpiri -4036081 ki te \frac{16152361}{4}.
\left(n-\frac{4019}{2}\right)^{2}=\frac{8037}{4}
Tauwehea n^{2}-4019n+\frac{16152361}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{4019}{2}\right)^{2}}=\sqrt{\frac{8037}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{4019}{2}=\frac{3\sqrt{893}}{2} n-\frac{4019}{2}=-\frac{3\sqrt{893}}{2}
Whakarūnātia.
n=\frac{3\sqrt{893}+4019}{2} n=\frac{4019-3\sqrt{893}}{2}
Me tāpiri \frac{4019}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}