Tauwehe
\left(n-14\right)\left(n+2\right)
Aromātai
\left(n-14\right)\left(n+2\right)
Tohaina
Kua tāruatia ki te papatopenga
n^{2}-12n-28
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-12 ab=1\left(-28\right)=-28
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei n^{2}+an+bn-28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-28 2,-14 4,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -28.
1-28=-27 2-14=-12 4-7=-3
Tātaihia te tapeke mō ia takirua.
a=-14 b=2
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(n^{2}-14n\right)+\left(2n-28\right)
Tuhia anō te n^{2}-12n-28 hei \left(n^{2}-14n\right)+\left(2n-28\right).
n\left(n-14\right)+2\left(n-14\right)
Tauwehea te n i te tuatahi me te 2 i te rōpū tuarua.
\left(n-14\right)\left(n+2\right)
Whakatauwehea atu te kīanga pātahi n-14 mā te whakamahi i te āhuatanga tātai tohatoha.
n^{2}-12n-28=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-28\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-12\right)±\sqrt{144-4\left(-28\right)}}{2}
Pūrua -12.
n=\frac{-\left(-12\right)±\sqrt{144+112}}{2}
Whakareatia -4 ki te -28.
n=\frac{-\left(-12\right)±\sqrt{256}}{2}
Tāpiri 144 ki te 112.
n=\frac{-\left(-12\right)±16}{2}
Tuhia te pūtakerua o te 256.
n=\frac{12±16}{2}
Ko te tauaro o -12 ko 12.
n=\frac{28}{2}
Nā, me whakaoti te whārite n=\frac{12±16}{2} ina he tāpiri te ±. Tāpiri 12 ki te 16.
n=14
Whakawehe 28 ki te 2.
n=-\frac{4}{2}
Nā, me whakaoti te whārite n=\frac{12±16}{2} ina he tango te ±. Tango 16 mai i 12.
n=-2
Whakawehe -4 ki te 2.
n^{2}-12n-28=\left(n-14\right)\left(n-\left(-2\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 14 mō te x_{1} me te -2 mō te x_{2}.
n^{2}-12n-28=\left(n-14\right)\left(n+2\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}