Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}-25n-144=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-144\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-25\right)±\sqrt{625-4\left(-144\right)}}{2}
Pūrua -25.
n=\frac{-\left(-25\right)±\sqrt{625+576}}{2}
Whakareatia -4 ki te -144.
n=\frac{-\left(-25\right)±\sqrt{1201}}{2}
Tāpiri 625 ki te 576.
n=\frac{25±\sqrt{1201}}{2}
Ko te tauaro o -25 ko 25.
n=\frac{\sqrt{1201}+25}{2}
Nā, me whakaoti te whārite n=\frac{25±\sqrt{1201}}{2} ina he tāpiri te ±. Tāpiri 25 ki te \sqrt{1201}.
n=\frac{25-\sqrt{1201}}{2}
Nā, me whakaoti te whārite n=\frac{25±\sqrt{1201}}{2} ina he tango te ±. Tango \sqrt{1201} mai i 25.
n^{2}-25n-144=\left(n-\frac{\sqrt{1201}+25}{2}\right)\left(n-\frac{25-\sqrt{1201}}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{25+\sqrt{1201}}{2} mō te x_{1} me te \frac{25-\sqrt{1201}}{2} mō te x_{2}.