Whakaoti mō n
n=-4
n=15
Tohaina
Kua tāruatia ki te papatopenga
a+b=-11 ab=-60
Hei whakaoti i te whārite, whakatauwehea te n^{2}-11n-60 mā te whakamahi i te tātai n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Tātaihia te tapeke mō ia takirua.
a=-15 b=4
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(n-15\right)\left(n+4\right)
Me tuhi anō te kīanga whakatauwehe \left(n+a\right)\left(n+b\right) mā ngā uara i tātaihia.
n=15 n=-4
Hei kimi otinga whārite, me whakaoti te n-15=0 me te n+4=0.
a+b=-11 ab=1\left(-60\right)=-60
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei n^{2}+an+bn-60. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Tātaihia te tapeke mō ia takirua.
a=-15 b=4
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(n^{2}-15n\right)+\left(4n-60\right)
Tuhia anō te n^{2}-11n-60 hei \left(n^{2}-15n\right)+\left(4n-60\right).
n\left(n-15\right)+4\left(n-15\right)
Tauwehea te n i te tuatahi me te 4 i te rōpū tuarua.
\left(n-15\right)\left(n+4\right)
Whakatauwehea atu te kīanga pātahi n-15 mā te whakamahi i te āhuatanga tātai tohatoha.
n=15 n=-4
Hei kimi otinga whārite, me whakaoti te n-15=0 me te n+4=0.
n^{2}-11n-60=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-60\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -11 mō b, me -60 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-11\right)±\sqrt{121-4\left(-60\right)}}{2}
Pūrua -11.
n=\frac{-\left(-11\right)±\sqrt{121+240}}{2}
Whakareatia -4 ki te -60.
n=\frac{-\left(-11\right)±\sqrt{361}}{2}
Tāpiri 121 ki te 240.
n=\frac{-\left(-11\right)±19}{2}
Tuhia te pūtakerua o te 361.
n=\frac{11±19}{2}
Ko te tauaro o -11 ko 11.
n=\frac{30}{2}
Nā, me whakaoti te whārite n=\frac{11±19}{2} ina he tāpiri te ±. Tāpiri 11 ki te 19.
n=15
Whakawehe 30 ki te 2.
n=-\frac{8}{2}
Nā, me whakaoti te whārite n=\frac{11±19}{2} ina he tango te ±. Tango 19 mai i 11.
n=-4
Whakawehe -8 ki te 2.
n=15 n=-4
Kua oti te whārite te whakatau.
n^{2}-11n-60=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
n^{2}-11n-60-\left(-60\right)=-\left(-60\right)
Me tāpiri 60 ki ngā taha e rua o te whārite.
n^{2}-11n=-\left(-60\right)
Mā te tango i te -60 i a ia ake anō ka toe ko te 0.
n^{2}-11n=60
Tango -60 mai i 0.
n^{2}-11n+\left(-\frac{11}{2}\right)^{2}=60+\left(-\frac{11}{2}\right)^{2}
Whakawehea te -11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{2}. Nā, tāpiria te pūrua o te -\frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-11n+\frac{121}{4}=60+\frac{121}{4}
Pūruatia -\frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-11n+\frac{121}{4}=\frac{361}{4}
Tāpiri 60 ki te \frac{121}{4}.
\left(n-\frac{11}{2}\right)^{2}=\frac{361}{4}
Tauwehea n^{2}-11n+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{11}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{11}{2}=\frac{19}{2} n-\frac{11}{2}=-\frac{19}{2}
Whakarūnātia.
n=15 n=-4
Me tāpiri \frac{11}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}