Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}-\sqrt{3}n+1=0
Whakaraupapatia anō ngā kīanga tau.
n^{2}+\left(-\sqrt{3}\right)n+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-\sqrt{3}\right)±\sqrt{\left(-\sqrt{3}\right)^{2}-4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -\sqrt{3} mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-\sqrt{3}\right)±\sqrt{3-4}}{2}
Pūrua -\sqrt{3}.
n=\frac{-\left(-\sqrt{3}\right)±\sqrt{-1}}{2}
Tāpiri 3 ki te -4.
n=\frac{-\left(-\sqrt{3}\right)±i}{2}
Tuhia te pūtakerua o te -1.
n=\frac{\sqrt{3}±i}{2}
Ko te tauaro o -\sqrt{3} ko \sqrt{3}.
n=\frac{\sqrt{3}+i}{2}
Nā, me whakaoti te whārite n=\frac{\sqrt{3}±i}{2} ina he tāpiri te ±. Tāpiri \sqrt{3} ki te i.
n=\frac{\sqrt{3}}{2}+\frac{1}{2}i
Whakawehe \sqrt{3}+i ki te 2.
n=\frac{\sqrt{3}-i}{2}
Nā, me whakaoti te whārite n=\frac{\sqrt{3}±i}{2} ina he tango te ±. Tango i mai i \sqrt{3}.
n=\frac{\sqrt{3}}{2}-\frac{1}{2}i
Whakawehe \sqrt{3}-i ki te 2.
n=\frac{\sqrt{3}}{2}+\frac{1}{2}i n=\frac{\sqrt{3}}{2}-\frac{1}{2}i
Kua oti te whārite te whakatau.
n^{2}-\sqrt{3}n=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
n^{2}+\left(-\sqrt{3}\right)n=-1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
n^{2}+\left(-\sqrt{3}\right)n+\left(-\frac{\sqrt{3}}{2}\right)^{2}=-1+\left(-\frac{\sqrt{3}}{2}\right)^{2}
Whakawehea te -\sqrt{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{\sqrt{3}}{2}. Nā, tāpiria te pūrua o te -\frac{\sqrt{3}}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+\left(-\sqrt{3}\right)n+\frac{3}{4}=-1+\frac{3}{4}
Pūrua -\frac{\sqrt{3}}{2}.
n^{2}+\left(-\sqrt{3}\right)n+\frac{3}{4}=-\frac{1}{4}
Tāpiri -1 ki te \frac{3}{4}.
\left(n-\frac{\sqrt{3}}{2}\right)^{2}=-\frac{1}{4}
Tauwehea n^{2}+\left(-\sqrt{3}\right)n+\frac{3}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{-\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{\sqrt{3}}{2}=\frac{1}{2}i n-\frac{\sqrt{3}}{2}=-\frac{1}{2}i
Whakarūnātia.
n=\frac{\sqrt{3}}{2}+\frac{1}{2}i n=\frac{\sqrt{3}}{2}-\frac{1}{2}i
Me tāpiri \frac{\sqrt{3}}{2} ki ngā taha e rua o te whārite.