Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}-2n=0
Tangohia te 2n mai i ngā taha e rua.
n\left(n-2\right)=0
Tauwehea te n.
n=0 n=2
Hei kimi otinga whārite, me whakaoti te n=0 me te n-2=0.
n^{2}-2n=0
Tangohia te 2n mai i ngā taha e rua.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-2\right)±2}{2}
Tuhia te pūtakerua o te \left(-2\right)^{2}.
n=\frac{2±2}{2}
Ko te tauaro o -2 ko 2.
n=\frac{4}{2}
Nā, me whakaoti te whārite n=\frac{2±2}{2} ina he tāpiri te ±. Tāpiri 2 ki te 2.
n=2
Whakawehe 4 ki te 2.
n=\frac{0}{2}
Nā, me whakaoti te whārite n=\frac{2±2}{2} ina he tango te ±. Tango 2 mai i 2.
n=0
Whakawehe 0 ki te 2.
n=2 n=0
Kua oti te whārite te whakatau.
n^{2}-2n=0
Tangohia te 2n mai i ngā taha e rua.
n^{2}-2n+1=1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
\left(n-1\right)^{2}=1
Tauwehea n^{2}-2n+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-1\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-1=1 n-1=-1
Whakarūnātia.
n=2 n=0
Me tāpiri 1 ki ngā taha e rua o te whārite.