Whakaoti mō n
n=-8
n=-1
Tohaina
Kua tāruatia ki te papatopenga
a+b=9 ab=8
Hei whakaoti i te whārite, whakatauwehea te n^{2}+9n+8 mā te whakamahi i te tātai n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,8 2,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
1+8=9 2+4=6
Tātaihia te tapeke mō ia takirua.
a=1 b=8
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(n+1\right)\left(n+8\right)
Me tuhi anō te kīanga whakatauwehe \left(n+a\right)\left(n+b\right) mā ngā uara i tātaihia.
n=-1 n=-8
Hei kimi otinga whārite, me whakaoti te n+1=0 me te n+8=0.
a+b=9 ab=1\times 8=8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei n^{2}+an+bn+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,8 2,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
1+8=9 2+4=6
Tātaihia te tapeke mō ia takirua.
a=1 b=8
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(n^{2}+n\right)+\left(8n+8\right)
Tuhia anō te n^{2}+9n+8 hei \left(n^{2}+n\right)+\left(8n+8\right).
n\left(n+1\right)+8\left(n+1\right)
Tauwehea te n i te tuatahi me te 8 i te rōpū tuarua.
\left(n+1\right)\left(n+8\right)
Whakatauwehea atu te kīanga pātahi n+1 mā te whakamahi i te āhuatanga tātai tohatoha.
n=-1 n=-8
Hei kimi otinga whārite, me whakaoti te n+1=0 me te n+8=0.
n^{2}+9n+8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-9±\sqrt{9^{2}-4\times 8}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 9 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-9±\sqrt{81-4\times 8}}{2}
Pūrua 9.
n=\frac{-9±\sqrt{81-32}}{2}
Whakareatia -4 ki te 8.
n=\frac{-9±\sqrt{49}}{2}
Tāpiri 81 ki te -32.
n=\frac{-9±7}{2}
Tuhia te pūtakerua o te 49.
n=-\frac{2}{2}
Nā, me whakaoti te whārite n=\frac{-9±7}{2} ina he tāpiri te ±. Tāpiri -9 ki te 7.
n=-1
Whakawehe -2 ki te 2.
n=-\frac{16}{2}
Nā, me whakaoti te whārite n=\frac{-9±7}{2} ina he tango te ±. Tango 7 mai i -9.
n=-8
Whakawehe -16 ki te 2.
n=-1 n=-8
Kua oti te whārite te whakatau.
n^{2}+9n+8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
n^{2}+9n+8-8=-8
Me tango 8 mai i ngā taha e rua o te whārite.
n^{2}+9n=-8
Mā te tango i te 8 i a ia ake anō ka toe ko te 0.
n^{2}+9n+\left(\frac{9}{2}\right)^{2}=-8+\left(\frac{9}{2}\right)^{2}
Whakawehea te 9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{2}. Nā, tāpiria te pūrua o te \frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+9n+\frac{81}{4}=-8+\frac{81}{4}
Pūruatia \frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+9n+\frac{81}{4}=\frac{49}{4}
Tāpiri -8 ki te \frac{81}{4}.
\left(n+\frac{9}{2}\right)^{2}=\frac{49}{4}
Tauwehea n^{2}+9n+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{9}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{9}{2}=\frac{7}{2} n+\frac{9}{2}=-\frac{7}{2}
Whakarūnātia.
n=-1 n=-8
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}