Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}=80-8
Tangohia te 8 mai i ngā taha e rua.
n^{2}=72
Tangohia te 8 i te 80, ka 72.
n=6\sqrt{2} n=-6\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n^{2}+8-80=0
Tangohia te 80 mai i ngā taha e rua.
n^{2}-72=0
Tangohia te 80 i te 8, ka -72.
n=\frac{0±\sqrt{0^{2}-4\left(-72\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-72\right)}}{2}
Pūrua 0.
n=\frac{0±\sqrt{288}}{2}
Whakareatia -4 ki te -72.
n=\frac{0±12\sqrt{2}}{2}
Tuhia te pūtakerua o te 288.
n=6\sqrt{2}
Nā, me whakaoti te whārite n=\frac{0±12\sqrt{2}}{2} ina he tāpiri te ±.
n=-6\sqrt{2}
Nā, me whakaoti te whārite n=\frac{0±12\sqrt{2}}{2} ina he tango te ±.
n=6\sqrt{2} n=-6\sqrt{2}
Kua oti te whārite te whakatau.