Whakaoti mō n
n=\frac{\sqrt{29}-7}{2}\approx -0.807417596
n=\frac{-\sqrt{29}-7}{2}\approx -6.192582404
Tohaina
Kua tāruatia ki te papatopenga
n^{2}+7n+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-7±\sqrt{7^{2}-4\times 5}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 7 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-7±\sqrt{49-4\times 5}}{2}
Pūrua 7.
n=\frac{-7±\sqrt{49-20}}{2}
Whakareatia -4 ki te 5.
n=\frac{-7±\sqrt{29}}{2}
Tāpiri 49 ki te -20.
n=\frac{\sqrt{29}-7}{2}
Nā, me whakaoti te whārite n=\frac{-7±\sqrt{29}}{2} ina he tāpiri te ±. Tāpiri -7 ki te \sqrt{29}.
n=\frac{-\sqrt{29}-7}{2}
Nā, me whakaoti te whārite n=\frac{-7±\sqrt{29}}{2} ina he tango te ±. Tango \sqrt{29} mai i -7.
n=\frac{\sqrt{29}-7}{2} n=\frac{-\sqrt{29}-7}{2}
Kua oti te whārite te whakatau.
n^{2}+7n+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
n^{2}+7n+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
n^{2}+7n=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
n^{2}+7n+\left(\frac{7}{2}\right)^{2}=-5+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+7n+\frac{49}{4}=-5+\frac{49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+7n+\frac{49}{4}=\frac{29}{4}
Tāpiri -5 ki te \frac{49}{4}.
\left(n+\frac{7}{2}\right)^{2}=\frac{29}{4}
Tauwehea n^{2}+7n+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{7}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{7}{2}=\frac{\sqrt{29}}{2} n+\frac{7}{2}=-\frac{\sqrt{29}}{2}
Whakarūnātia.
n=\frac{\sqrt{29}-7}{2} n=\frac{-\sqrt{29}-7}{2}
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}