Whakaoti mō n
n=\sqrt{22690300673}-150629\approx 3.999946891
n=-\sqrt{22690300673}-150629\approx -301261.999946891
Tohaina
Kua tāruatia ki te papatopenga
n^{2}+301258n-1205032=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-301258±\sqrt{301258^{2}-4\left(-1205032\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 301258 mō b, me -1205032 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-301258±\sqrt{90756382564-4\left(-1205032\right)}}{2}
Pūrua 301258.
n=\frac{-301258±\sqrt{90756382564+4820128}}{2}
Whakareatia -4 ki te -1205032.
n=\frac{-301258±\sqrt{90761202692}}{2}
Tāpiri 90756382564 ki te 4820128.
n=\frac{-301258±2\sqrt{22690300673}}{2}
Tuhia te pūtakerua o te 90761202692.
n=\frac{2\sqrt{22690300673}-301258}{2}
Nā, me whakaoti te whārite n=\frac{-301258±2\sqrt{22690300673}}{2} ina he tāpiri te ±. Tāpiri -301258 ki te 2\sqrt{22690300673}.
n=\sqrt{22690300673}-150629
Whakawehe -301258+2\sqrt{22690300673} ki te 2.
n=\frac{-2\sqrt{22690300673}-301258}{2}
Nā, me whakaoti te whārite n=\frac{-301258±2\sqrt{22690300673}}{2} ina he tango te ±. Tango 2\sqrt{22690300673} mai i -301258.
n=-\sqrt{22690300673}-150629
Whakawehe -301258-2\sqrt{22690300673} ki te 2.
n=\sqrt{22690300673}-150629 n=-\sqrt{22690300673}-150629
Kua oti te whārite te whakatau.
n^{2}+301258n-1205032=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
n^{2}+301258n-1205032-\left(-1205032\right)=-\left(-1205032\right)
Me tāpiri 1205032 ki ngā taha e rua o te whārite.
n^{2}+301258n=-\left(-1205032\right)
Mā te tango i te -1205032 i a ia ake anō ka toe ko te 0.
n^{2}+301258n=1205032
Tango -1205032 mai i 0.
n^{2}+301258n+150629^{2}=1205032+150629^{2}
Whakawehea te 301258, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 150629. Nā, tāpiria te pūrua o te 150629 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+301258n+22689095641=1205032+22689095641
Pūrua 150629.
n^{2}+301258n+22689095641=22690300673
Tāpiri 1205032 ki te 22689095641.
\left(n+150629\right)^{2}=22690300673
Tauwehea n^{2}+301258n+22689095641. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+150629\right)^{2}}=\sqrt{22690300673}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+150629=\sqrt{22690300673} n+150629=-\sqrt{22690300673}
Whakarūnātia.
n=\sqrt{22690300673}-150629 n=-\sqrt{22690300673}-150629
Me tango 150629 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}