Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

n^{2}+3n-1339=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-3±\sqrt{3^{2}-4\left(-1339\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-3±\sqrt{9-4\left(-1339\right)}}{2}
Pūrua 3.
n=\frac{-3±\sqrt{9+5356}}{2}
Whakareatia -4 ki te -1339.
n=\frac{-3±\sqrt{5365}}{2}
Tāpiri 9 ki te 5356.
n=\frac{\sqrt{5365}-3}{2}
Nā, me whakaoti te whārite n=\frac{-3±\sqrt{5365}}{2} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{5365}.
n=\frac{-\sqrt{5365}-3}{2}
Nā, me whakaoti te whārite n=\frac{-3±\sqrt{5365}}{2} ina he tango te ±. Tango \sqrt{5365} mai i -3.
n^{2}+3n-1339=\left(n-\frac{\sqrt{5365}-3}{2}\right)\left(n-\frac{-\sqrt{5365}-3}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-3+\sqrt{5365}}{2} mō te x_{1} me te \frac{-3-\sqrt{5365}}{2} mō te x_{2}.