Whakaoti mō n
n=-6
n=3
Tohaina
Kua tāruatia ki te papatopenga
n^{2}+3n-12-6=0
Tangohia te 6 mai i ngā taha e rua.
n^{2}+3n-18=0
Tangohia te 6 i te -12, ka -18.
a+b=3 ab=-18
Hei whakaoti i te whārite, whakatauwehea te n^{2}+3n-18 mā te whakamahi i te tātai n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,18 -2,9 -3,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
-1+18=17 -2+9=7 -3+6=3
Tātaihia te tapeke mō ia takirua.
a=-3 b=6
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(n-3\right)\left(n+6\right)
Me tuhi anō te kīanga whakatauwehe \left(n+a\right)\left(n+b\right) mā ngā uara i tātaihia.
n=3 n=-6
Hei kimi otinga whārite, me whakaoti te n-3=0 me te n+6=0.
n^{2}+3n-12-6=0
Tangohia te 6 mai i ngā taha e rua.
n^{2}+3n-18=0
Tangohia te 6 i te -12, ka -18.
a+b=3 ab=1\left(-18\right)=-18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei n^{2}+an+bn-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,18 -2,9 -3,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
-1+18=17 -2+9=7 -3+6=3
Tātaihia te tapeke mō ia takirua.
a=-3 b=6
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(n^{2}-3n\right)+\left(6n-18\right)
Tuhia anō te n^{2}+3n-18 hei \left(n^{2}-3n\right)+\left(6n-18\right).
n\left(n-3\right)+6\left(n-3\right)
Tauwehea te n i te tuatahi me te 6 i te rōpū tuarua.
\left(n-3\right)\left(n+6\right)
Whakatauwehea atu te kīanga pātahi n-3 mā te whakamahi i te āhuatanga tātai tohatoha.
n=3 n=-6
Hei kimi otinga whārite, me whakaoti te n-3=0 me te n+6=0.
n^{2}+3n-12=6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n^{2}+3n-12-6=6-6
Me tango 6 mai i ngā taha e rua o te whārite.
n^{2}+3n-12-6=0
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
n^{2}+3n-18=0
Tango 6 mai i -12.
n=\frac{-3±\sqrt{3^{2}-4\left(-18\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 3 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-3±\sqrt{9-4\left(-18\right)}}{2}
Pūrua 3.
n=\frac{-3±\sqrt{9+72}}{2}
Whakareatia -4 ki te -18.
n=\frac{-3±\sqrt{81}}{2}
Tāpiri 9 ki te 72.
n=\frac{-3±9}{2}
Tuhia te pūtakerua o te 81.
n=\frac{6}{2}
Nā, me whakaoti te whārite n=\frac{-3±9}{2} ina he tāpiri te ±. Tāpiri -3 ki te 9.
n=3
Whakawehe 6 ki te 2.
n=-\frac{12}{2}
Nā, me whakaoti te whārite n=\frac{-3±9}{2} ina he tango te ±. Tango 9 mai i -3.
n=-6
Whakawehe -12 ki te 2.
n=3 n=-6
Kua oti te whārite te whakatau.
n^{2}+3n-12=6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
n^{2}+3n-12-\left(-12\right)=6-\left(-12\right)
Me tāpiri 12 ki ngā taha e rua o te whārite.
n^{2}+3n=6-\left(-12\right)
Mā te tango i te -12 i a ia ake anō ka toe ko te 0.
n^{2}+3n=18
Tango -12 mai i 6.
n^{2}+3n+\left(\frac{3}{2}\right)^{2}=18+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+3n+\frac{9}{4}=18+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+3n+\frac{9}{4}=\frac{81}{4}
Tāpiri 18 ki te \frac{9}{4}.
\left(n+\frac{3}{2}\right)^{2}=\frac{81}{4}
Tauwehea n^{2}+3n+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{3}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{3}{2}=\frac{9}{2} n+\frac{3}{2}=-\frac{9}{2}
Whakarūnātia.
n=3 n=-6
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}