Tauwehe
\left(n+9\right)^{2}
Aromātai
\left(n+9\right)^{2}
Tohaina
Kua tāruatia ki te papatopenga
a+b=18 ab=1\times 81=81
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei n^{2}+an+bn+81. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,81 3,27 9,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 81.
1+81=82 3+27=30 9+9=18
Tātaihia te tapeke mō ia takirua.
a=9 b=9
Ko te otinga te takirua ka hoatu i te tapeke 18.
\left(n^{2}+9n\right)+\left(9n+81\right)
Tuhia anō te n^{2}+18n+81 hei \left(n^{2}+9n\right)+\left(9n+81\right).
n\left(n+9\right)+9\left(n+9\right)
Tauwehea te n i te tuatahi me te 9 i te rōpū tuarua.
\left(n+9\right)\left(n+9\right)
Whakatauwehea atu te kīanga pātahi n+9 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(n+9\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(n^{2}+18n+81)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
\sqrt{81}=9
Kimihia te pūtakerua o te kīanga tau autō, 81.
\left(n+9\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
n^{2}+18n+81=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-18±\sqrt{18^{2}-4\times 81}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-18±\sqrt{324-4\times 81}}{2}
Pūrua 18.
n=\frac{-18±\sqrt{324-324}}{2}
Whakareatia -4 ki te 81.
n=\frac{-18±\sqrt{0}}{2}
Tāpiri 324 ki te -324.
n=\frac{-18±0}{2}
Tuhia te pūtakerua o te 0.
n^{2}+18n+81=\left(n-\left(-9\right)\right)\left(n-\left(-9\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -9 mō te x_{1} me te -9 mō te x_{2}.
n^{2}+18n+81=\left(n+9\right)\left(n+9\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}