Aromātai
\frac{10066579237658681210000000000000000n}{67123863357730880366709189833541}
Whakaroha
\frac{10066579237658681210000000000000000n}{67123863357730880366709189833541}
Tohaina
Kua tāruatia ki te papatopenga
n {(0.006712754400356021 ^ {-1} + 0.9999451693655121 ^ {-1})}
Evaluate trigonometric functions in the problem
n\left(\frac{1000000000000000000}{6712754400356021}+0.9999451693655121^{-1}\right)
Tātaihia te 0.006712754400356021 mā te pū o -1, kia riro ko \frac{1000000000000000000}{6712754400356021}.
n\left(\frac{1000000000000000000}{6712754400356021}+\frac{10000000000000000}{9999451693655121}\right)
Tātaihia te 0.9999451693655121 mā te pū o -1, kia riro ko \frac{10000000000000000}{9999451693655121}.
n\times \frac{10066579237658681210000000000000000}{67123863357730880366709189833541}
Tāpirihia te \frac{1000000000000000000}{6712754400356021} ki te \frac{10000000000000000}{9999451693655121}, ka \frac{10066579237658681210000000000000000}{67123863357730880366709189833541}.
n {(0.006712754400356021 ^ {-1} + 0.9999451693655121 ^ {-1})}
Evaluate trigonometric functions in the problem
n\left(\frac{1000000000000000000}{6712754400356021}+0.9999451693655121^{-1}\right)
Tātaihia te 0.006712754400356021 mā te pū o -1, kia riro ko \frac{1000000000000000000}{6712754400356021}.
n\left(\frac{1000000000000000000}{6712754400356021}+\frac{10000000000000000}{9999451693655121}\right)
Tātaihia te 0.9999451693655121 mā te pū o -1, kia riro ko \frac{10000000000000000}{9999451693655121}.
n\times \frac{10066579237658681210000000000000000}{67123863357730880366709189833541}
Tāpirihia te \frac{1000000000000000000}{6712754400356021} ki te \frac{10000000000000000}{9999451693655121}, ka \frac{10066579237658681210000000000000000}{67123863357730880366709189833541}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}