Aromātai
-\frac{2nx^{6}}{y}
Whakaroha
-\frac{2nx^{6}}{y}
Tohaina
Kua tāruatia ki te papatopenga
\frac{n\left(-2\right)x\left(\left(-x\right)y\right)^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
Whakawehe n ki te \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}} mā te whakarea n ki te tau huripoki o \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
Whakarohaina te \left(\left(-x\right)y\right)^{-1}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)\times 1\right)^{-3}}
Tātaihia te y mā te pū o 0, kia riro ko 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1^{-3}}
Whakarohaina te \left(\left(-x^{2}\right)\times 1\right)^{-3}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1}
Tātaihia te 1 mā te pū o -3, kia riro ko 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{n\left(-2\right)x\left(-1\right)^{-1}x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Whakarohaina te \left(-x\right)^{-1}.
\frac{n\left(-2\right)x\left(-1\right)x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Tātaihia te -1 mā te pū o -1, kia riro ko -1.
\frac{n\times 2xx^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Whakareatia te -2 ki te -1, ka 2.
\frac{n\times 2y^{-1}}{\left(-x^{2}\right)^{-3}}
Whakareatia te x ki te x^{-1}, ka 1.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}\left(x^{2}\right)^{-3}}
Whakarohaina te \left(-x^{2}\right)^{-3}.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}x^{-6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -3 kia riro ai te -6.
\frac{n\times 2y^{-1}}{-x^{-6}}
Tātaihia te -1 mā te pū o -3, kia riro ko -1.
\frac{n\left(-2\right)y^{-1}}{x^{-6}}
Me whakakore tahi te -1 i te taurunga me te tauraro.
\frac{n\left(-2\right)x\left(\left(-x\right)y\right)^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
Whakawehe n ki te \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}} mā te whakarea n ki te tau huripoki o \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
Whakarohaina te \left(\left(-x\right)y\right)^{-1}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)\times 1\right)^{-3}}
Tātaihia te y mā te pū o 0, kia riro ko 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1^{-3}}
Whakarohaina te \left(\left(-x^{2}\right)\times 1\right)^{-3}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1}
Tātaihia te 1 mā te pū o -3, kia riro ko 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{n\left(-2\right)x\left(-1\right)^{-1}x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Whakarohaina te \left(-x\right)^{-1}.
\frac{n\left(-2\right)x\left(-1\right)x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Tātaihia te -1 mā te pū o -1, kia riro ko -1.
\frac{n\times 2xx^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Whakareatia te -2 ki te -1, ka 2.
\frac{n\times 2y^{-1}}{\left(-x^{2}\right)^{-3}}
Whakareatia te x ki te x^{-1}, ka 1.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}\left(x^{2}\right)^{-3}}
Whakarohaina te \left(-x^{2}\right)^{-3}.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}x^{-6}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -3 kia riro ai te -6.
\frac{n\times 2y^{-1}}{-x^{-6}}
Tātaihia te -1 mā te pū o -3, kia riro ko -1.
\frac{n\left(-2\right)y^{-1}}{x^{-6}}
Me whakakore tahi te -1 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}